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Abstract 

 

 

Over the past few decades, Cluster Randomized Trials (CRT) have become a design of 

choice in many research areas. One of the most critical issues in planning a CRT is to ensure that 

the study design is sensitive enough to capture the intervention effect. The assessment of power 

and sample size in such studies is often faced with many challenges due to several 

methodological difficulties.  

While studies on power and sample size for cluster designs with one and two levels are 

abundant, the evaluation of required sample size for three-level designs has been generally 

overlooked. First, the nesting effect introduces more than one intracluster correlation into the 

model. Second, the variance structure of the estimated treatment difference is more complicated. 

Third, sample size results required for several levels are needed. 

In this work, we developed sample size and power formulas for the three-level data 

structures based on the generalized linear mixed model approach. We derived explicit and 

general power and sample size equations for detecting a hypothesized effect on continuous 

Gaussian outcomes and binary outcomes. To confirm the accuracy of the formulas, we 

conducted several simulation studies and compared the results. To establish a connection 

between the theoretical formulas and their applications, we developed a SAS user-interface 

macro that allowed the researchers to estimate sample size for a three-level design for different 

scenarios. These scenarios depend on which randomization level is assigned and whether or not 

there is an interaction effect. 



www.manaraa.com

 1
 

Chapter I 

Introduction 

 

 

Over the last few decades, randomized controlled trials have become the design of choice 

in medical sciences and disease prevention research for the evaluation of new medical 

interventions. In such trials, an important issue in the design stage is the unit of randomization. 

This unit could be the individual patients, the physicians, a group of physicians within a practice, 

or several practices within a specific geographic area. 

In some situations, randomization at the individual level has advantages because it 

minimizes the risk of covariate imbalances. For example, different practices tend to have 

different types of patients with their own characteristics. Furthermore, trials that randomize 

individual patients can use practices as blocks to reduce the dependency of the outcomes on 

practice level discrepancies, such as the degree of adherence to a study protocol or the difference 

in clinical skills found amongst the providers. 

 In other situations, however, the interventions are randomized not to individuals but to 

intact groups or clusters, such as medical practices, worksites, families, or communities. These 

studies, referred to as Cluster Randomized Trials (CRT), are being used increasingly because of 

many reasons. First, randomizing at cluster level might be the only feasible method of 

conducting a trial in certain fields. Examples include studies where interventions are targeted at a 

whole practice (the implementation of a new Electronic Health Record system) or a whole 

community (introduction of new water and sanitation schemes). Second, randomizing by cluster 

can be used to reduce the likelihood of contamination, which is likely to happen when 
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individuals receive an intervention within the same group share information with each other. For 

example, patients in an intervention group who are being educated on colon cancer screenings 

might talk to the control-allocated patients visiting the same practice, who in turn will ask for the 

screening themselves or might respond differently on the outcome measures due to this 

influence. Third, CRT is justified when the efficacy is established at individual level, but the 

primary goal is to measure the effectiveness when an intervention is applied at the cluster level, 

or when the desire is to capture the mass effect of an intervention on a large proportion of group 

members (Murray, 1998). 

 One of the most critical issues in designing a cluster randomized experiment is to ensure 

that the study design is sensitive enough to capture the effect of the intervention. This important 

task involves making a decision about power and sample sizes. Good study design requires the 

planning of sample sizes so that the test for the intervention effect has adequate statistical power 

to detect the smallest difference that is of scientific or practical interest. Insufficient sample sizes 

can lead to inadequate sensitivity, whereas excessive sample sizes can be a waste of time and 

valuable resources. 

In the design stage of a cluster randomized study, researchers are required to answer three 

fundamental questions: (1) What are the minimum numbers of subjects in each cluster and the 

number of clusters that are required in order to attain a specified power for testing the treatment 

effect? (2) Is it better to investigate more clusters with fewer subjects in each cluster, or fewer 

clusters with more subjects in each cluster? (3) If there is a budget constraint, what is the 

optimum allocation of the sample sizes which will still allow for the desired power? To date, 

there are no definite guidelines that simultaneously answer the above questions. 
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The impact of randomization by cluster on the required sample sizes can be quite 

substantial. Campbell et al. (2004) provided a simple example to illustrate this impact. In a study 

to evaluate the effectiveness of educational training on asthma management for general 

practitioners, the intention of the design was to detect an increase in appropriate management of 

asthma patients from 40% to 60%, at a statistical power of 80% and significance level of 5%. 

From the researchers’ calculation, an individual-based sample size formula yielded a total 

sample size of 194 patients. However, when appropriate adjustment for clustering by general 

practice was taken into account, even with a small clustering effect, the true sample size 

requirement was 400. This sample size is more than twice the sample size computed under the 

assumption of no clustering effect, a significant difference that cannot be ignored. 

The assessment of power and sample size in studies involving clustering is faced with 

many challenges. First, the cluster effect must be taken into account. While standard sample size 

calculations operate under the assumption of independence between individuals, this assumption 

is violated in CRT. Second, in cluster studies, there is more than one component of variation: the 

variation among individuals within clusters, and the variation in the outcomes between clusters. 

It is essential that both sources of variation are taken into account in the design stage. Third, 

planning for a CRT involves more than just one sample size. The number of data units at each 

level required to reach a target level of statistical power must be determined. Furthermore, each 

sample size at a different level will affect the power differently. For example, in the study 

evaluating the appropriate management of asthma patients, the power of the test used to detect 

the intervention effect depends not only on the sample size of the patients within each practice, 

but also on the number of practices involved as well as the ratio of number of patients to number 

of practices.  
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Complicating matters further, the difficulty in computation of power in CRT arises from 

the complexity of the models. Much of the work on power and sample size requirements for 

cluster data is developed from the idea of multistage sampling, which creates a hierarchically 

nested structure with sample from one level nested within sample at another level. However, a 

sample taken from m clusters each of size n is not a simple random sample of mn individuals, 

and the sampling distribution of statistics on such clustered samples is not the same as that based 

on simple random samples of the same size. 

Different nesting structures can be seen in practice. One common structure is the two-

level design in which individual subjects are nested within clusters. For example, in trials where 

different interventions to improve quality of care are compared, the intervention is implemented 

at the level of healthcare professionals (e.g., clinicians, physicians, caregivers), while the effects 

are measured at the patient level. In such trials, patients are nested within healthcare 

professionals, creating the two-level nesting effects. 

During the last two decades, the design and analysis techniques for CRT with two levels 

have been fairly well-developed in the literature (Donner and Klar, 2000; Murray, 1998). In 

addition, statistical software for the two-level design is currently available; some are free to the 

public (Hedges and Hedberg, 2007; Raudenbush & Liu, 2000; Snijders and Bosker, 1993). 

However, most work on power analysis and sample size determination for CRT has only 

emphasized two-level designs, and some only handled one particular type of outcome variable. 

As a more recent development, randomized trials with three-level designs have become a 

common application in many different research areas, such as psychology, education, and 

medical sciences. Examples of three-level designs are abundant in the literature. Three of them 

will be listed here for illustration purpose. 
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In the first example, a cluster randomized controlled trial was designed to evaluate a 

school-based prevention program on tobacco and drug use. In this study, 170 schools from 9 

centers from seven countries (Austria, Belgium, Germany, Greece, Italy, Spain, Sweden) were 

randomized to one of three arms of an intervention (basic curriculum, basic with peer 

involvement, and basic with parent involvement) or to a control group. Twenty seven schools 

dropped out after the allocation to the study arm, leaving 143 schools and 345 classes actually 

included in the study. The number of schools varied between centers, as did the number of 

classes. Of 7409 eligible students, 7079 (95.7%) participated in the baseline survey. The 

evaluation is based on a comprehensive social influence approach, and was delivered during the 

school year 2004–2005 to a population of 12 to 14-year-old students attending junior high 

school. An anonymous questionnaire administered before and after the intervention was used to 

track behavioral and attitudinal changes. This cluster randomized trial assumed a three level 

structure in that students, classes, and school served as the first, second, and third level in the 

hierarchy, respectively. Randomization took place at the third level (schools) (Faggiano et al., 

2007). 

In the second example, researchers in Spain conducted a cluster randomized study to 

assess the effectiveness of a new “Experimental Program for Physical Activity Promotion” 

(PEPAF) in increasing physical activity in inactive patients. PEPAF is a program designed to 

increase physical activity in patients who did not meet the recommended aerobic physical 

activity levels. Physicians who participated in PEPAF provided patients with advice on using 

health promotion websites and health educational materials. In addition, a 15 minute consultation 

on individualized physical activity plan was offered to patients who committed to increase their 

activity level. Control group physicians delivered standard care and delayed any new systematic 
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intervention related to physical activity until the end of the study, unless the reason for 

consultation or the patients' health problems were directly related to inactivity. Recruitment 

involved inviting all 15 research groups of the Health Promotion Primary Care Research 

Network to participate, with a collaboration of at least 4 physicians per center as the requirement 

for eligibility. Seventy family physicians from 13 primary care centers belonging to 8 research 

groups agreed to participate. After signing a collaboration consent form, all 70 physicians were 

randomized to either the PEPAF or usual care (control) arm of the trial in a 1:1 ratio. Twelve 

physicians dropped out before the start of the study because of technical complaints, and 2 

physicians failed to participate. Finally, 56 physicians (29 allocated to the PEPAF arm and 27 to 

the control arm) performed the study at 13 primary care centers. Each family physician recruited 

150 patients aged 20 to 80 years, who did not meet the recommended aerobic physical activity 

level. Physicians assessed the patients' physical activity with assistance of a computerized 

algorithm. The study was managed online using Web-based software designed to help physicians 

follow the research protocol and control the recruitment process of each eligible patient. This 

study is an example of a three-level design in which patients (level one) are nested within 

physicians (level two), and physicians are nested within centers (level three). Randomization 

took place at the second level (physicians) (Grandes et al., 2009). 

In the third example, a randomized, controlled study was conducted by the Virginia 

Ambulatory Care Outcomes Research Network to compare the effect of an interactive web-based 

personalized healthcare record and the usual delivery of preventive services. Eight primary care 

practices in Northern Virginia were recruited. Practice size ranged from 2 to 35 clinicians.  Of 

the 80,000 active study site patients, 4,500 active patients were randomly selected for study 

participation.  The study sample was then randomly assigned to intervention (n=2,225) and 
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control (n=2,225) groups. Patients in the intervention group received up to three mailed requests 

from their clinician inviting them to use myPreventiveCare, a web-based personal health record 

that provides patients personalized prevention plans and individualized educational material 

about preventive services and chronic disease management. Control patients received “usual” 

preventive care and were not informed of myPreventiveCare.  Outcome measurements included 

the percentage of intervention patients who visited myPreventiveCare, percentage of patients 

who were up-to-date with indicated preventive service, and an aggregated percentage of 

preventive services that were up to date. This study can be considered an example of a three-

level design in which patients nested within physicians, and physicians nested within practices. 

Randomization took place at the first level (patients) (Krist et al., 2010). 

The three examples above show that analyses for nested cluster data do not always 

consist of two levels. It is not uncommon that a three-level design is encountered in practice. 

Hence, it is important that the three-level structure is taken into account right at the design stage 

of the experiment. 

In this work, we develop sample size formulas for the three-level data structures based on 

the generalized linear mixed model approach. We derive explicit and general power functions 

and sample size equations for detecting a hypothesized effect on continuous Gaussian outcomes 

and binary outcomes. In addition, we present a SAS macro that will allow the users to estimate 

sample size for three-level data structures in different scenarios depending on which level 

randomization is assigned and whether the interaction exists. 

We begin by providing some background and significance of this work in Chapter 2. 

Chapter 3 reviews basic statistical properties of cluster data and the general concepts behind 

power and sample size computation. Chapter 4 derives the formulas for sample size and power 
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for continuous Gaussian outcome. Chapter 5 derives the formulas for sample size and power for 

binary outcome. Chapter 6 presents a simulation study to verify the accuracy of the proposed 

formulas. Chapter 7 explains the development of a SAS macro to compute power and sample 

size, together with some practical examples to illustrate the use of the macro. Finally, Chapter 8 

includes a discussion of the current and future work. 
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Chapter 2 

Background and Significance 

 

 

Over the past three decades, the application of cluster randomized trials has led to a large 

body of methodological work and a growing literature that cuts across several areas of research. 

It has been well known that standard methods for controlled trials randomized at individual level 

cannot be applied directly to trials randomized at the cluster level. Thus, increased attention has 

been developed toward the design and analysis of CRT because of their special statistical 

characteristics.  

Despite the large amount of literature and discussions dedicated to the topic of CRT, the 

selection of proper statistical approaches to determine sample size still remains a challenge for 

researchers in multiple disciplines. The literature on sample size computation for two-level data 

can be found consistently during the last two decades, and some publications on sample size for 

three-level design also appeared recently. It is important to take a general look at the previous 

work and evaluate the impact of recent developments in this topic.  

This chapter provides a detailed review of several main issues in the development of the 

designs and analyses of CRT in general, and of the sample size estimation for multilevel data in 

particular. The chapter is structured as follows: Section 2.1 gives a general overview of the 

established literature in CRT. Section 2.2 presents issues concerning sample size determination 

and power assessment. Section 2.3 reviews statistical software that compute sample sizes in 

CRT. Finally, Section 2.4 discusses the significance and motivation behind this work. 
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2.1 Review of Statistical Issues in Cluster Randomized Trials 

Although the concept of a cluster randomized study dates decades ago when Kish (1965) 

introduced the technique of cluster-sampling design in survey sampling theory, increased interest 

in its statistical features was brought to the general research community by Cornfield (1978). In 

his work, Cornfield pointed out that two primary concerns needed to be addressed in experiments 

where groups (or clusters) of subjects are randomized. First, the variance between clusters is the 

dominant factor in the variance of cluster means. Second, there will be fewer degrees of freedom 

to estimate the between cluster variance than to estimate the within cluster variance.  

Over the years, issues involved in the design and analyses of clustered data have been 

discussed extensively by several researchers; examples include Klar and Donner (2001), Murray 

et al. (2008), and Dedrick et al. (2009). Based on the review of methodological and technical 

literature, three broad topics set the stage for discussion in the design and analysis of clustered 

data: (1) Issues in the experimental designs, (2) Issues in the selection of appropriate analytic 

models, and (3) Issues in the assessment of power and sample size determination.  

We will discuss the first two items in this section. The last item, the review on power and 

sample size estimation, will be explored separately in the next two sections because it is the 

focus of this work. 

 

2.1.1 Issues in Experimental Designs 

 A number of experimental designs have been specifically proposed for cluster 

randomized trials. The three most popular designs are matched-pair, stratified, and completely 

randomized trials. The last form of design is usually considered with no pre-stratification or 

matching on the baseline characteristics. 
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 Freedman et al. (1990) explored the gain in efficiency obtained from the matched-pair 

design by estimating the relative efficiency of an unmatched versus a pair-matched design. 

Defining the relative efficiency as 1 minus the ratio between the variance of matched design over 

the variance of unmatched design, the authors showed that the matched design can be more 

efficient compared to unmatched design when high correlation between the pairs was created 

from the effect of matching.  

 One commonly adopted matching factor is cluster size where clusters are grouped into 

categories such as small, medium, or large. As Donner and Klar (2000) suggested, this method is 

appealing because it helps to avoid the imbalance in the number of subjects per treatment group. 

In addition, the cluster size itself might associate with factors associated with other baseline 

variables, such as socioeconomic status or access to healthcare resources. 

The stratified design can be viewed as an extension of matched-pair design in which 

more than one cluster is randomly allocated within strata to each of the treatment arms. This 

design is preferred over the matched-pair design in situations when it is difficult to create close 

matches that correspond to important estimates. In addition, stratified design is more appealing 

because its allocation scheme is less rigid since it reduces many of the analytic limitations 

associated with matched-pair design ((Donner and Klar, 2000). In general, the choice between 

matching and stratification depends on the number of clusters, the accuracy of the matches, and 

the analytic plan (Murray, 1998). 

A completely randomized design with no pre-stratification or matching is perhaps the 

most commonly adopted design in practice. In any case, for all forms of designs the issue arises 

in the choice of which level randomization is executed. Zucker (1990) discussed the difference in 

the context of two-level design, in which subjects are nested within clusters. The treatments can 
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be assigned in two different ways. In the first scheme, the assignment of the treatments is done 

on the individual basis within each cluster. In the literature, this is known as subject-level 

randomization. The second option is to randomly assign the clusters to different treatment arms. 

This is known as cluster-level randomization where the subjects are nested in clusters, which in 

turn are nested in the treatment groups.  

 

2.1.2 Issues in the Selection of Appropriate Analysis Models 

To date, there is no single agree-upon method to analyze data from CRT. According to 

Murray (1998), one major source of errors in the analysis of clustered data is model mis-

specification. The selection of proper statistical approaches in clustered design is difficult 

because the usual assumptions under familiar methods are not met. Methods involving general 

linear models or generalized linear models are inappropriate for the analysis of clustered data 

because they only allow for one source of random variation, usually by ignoring the cluster 

effect, or treating the cluster as a fixed effect in the model. Zucker’s (1990) pointed out the 

pitfall in implementing such strategies by comparing what he defined as the fixed effect model 

(cluster is treated as fixed effect) and the mixed effect model (cluster is treated as random effect). 

By looking at the F-test, Zucker concluded that ignoring the cluster effect can inflate the Type I 

error and the level of inflation can be quite substantial when one mistakenly treats the clusters as 

a fixed effect. 

One strategy that has been recommended for clustered data is the use of a multilevel 

model, also known as a hierarchical linear model, or random coefficient model. This type of 

model is common in educational and social research, originally applied for longitudinal data and 

growth data. In the last decade, this technique has been used in the context of CRT because of 
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the hierarchical structure of the data. In essence, multilevel modeling provides for components of 

variance for cluster and individual slopes as well as intercepts. These models can be specified by 

using equations for each level or combining equations at each level into one. An introduction to 

multilevel modeling was written by Raudenbush (1993). The theory and implementation of 

multilevel models were discussed in depth by Hox (2002).  

The strength of the multilevel model lies on its ability to incorporate both fixed and 

random effects while allowing for unbalanced data and flexibility in handling missing data 

(Raudenbush, 1993). However, some issues still remain controversial in the application of 

multilevel models. For example, one issue involves the selection of predictors. As Dedrick et al. 

(2009) pointed out in their review, variable selection in multilevel models can be complicated 

and can easily become a source of error. Predictors can be selected for each level of the model, 

and interactions between predictors can be included at either one single level or across all levels. 

Another issue refers to the requirement of centering and the methods that accomplish this. One 

approach is to center around the grand mean of the predictor variable, another approach is to 

center around the cluster mean, or around a theoretically meaningful value. While the use of 

centering was not explicitly stated in many research studies, different methods have different 

implications for interpreting the parameter estimates (Raudenbush and Bryk, 2002).  

Another technique to analyze CRT data involves the use of permutation tests. This 

method was first discussed by Gail et al. (1996) and was reviewed by Murray (1998). In this 

approach, the distribution of all possible allocations of the clusters was examined, and the 

intervention effect for each allocation is estimated under the null hypothesis. The observed 

intervention effect is regarded as just one possible intervention effect among many, and the 

probability of getting a more extreme result is the proportion of possible intervention effects that 
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are greater than the observed effect. The benefit of a permutation test is that it does not rely on 

statistical models for its validity. In their simulation work, Gail et al. reported that permutation 

tests had satisfactory type I and type II errors. However, the disadvantage of this method arises 

when covariates were included in the model. In such situations, this technique requires as many 

assumptions as other model-based methods (Murray, 1998).  

Of all the statistical models being used to analyze cluster data, the most common one is 

the mixed model ANOVA/ANCOVA approach. This method is popular not only because of its 

computational simplicity, but also because of its ability to facilitate the estimations of models 

with fixed effects, random effects, or both. Of course, both mixed model ANOVA and 

ANCOVA are special cases of the generalized linear mixed models, which include random 

effects, random coefficients, and covariance patterns models. Murray (1998) illustrated the 

implementation of mixed model ANOVA/ANCOVA to analyze data collected from post-test 

only CRT, pre-test-post-test CRT, and CRT under both cross-sectional designs and cohort 

designs. In the cases of mixed model ANCOVA, regression adjustment for covariates was used 

to reduce bias and improve the precision. In their simulations, Murray and Wolfinger showed 

that the mixed model ANOVA/ANCOVA with one or two time intervals has a nominal type I 

error rate. They concluded that when properly executed, mixed model ANOVA/ANCOVA can 

provide a valid analysis for CRT (Murray and Wolfinger, 1994). 

One should keep it in mind that no matter what statistical model is used to analyze the 

data, designs with more than one level will call for more complex variance structures. The 

questions are how to best specify the covariance structure for the model, is there an interaction 

effect, and which level varies randomly and which level is fixed. Dedrick et al. (2009) classified 

the covariance parameters into three groups. The first group includes those that are assumed to 
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be zero and can be ignored. The second group includes those that are not zero and are supposed 

to be estimated. The third group includes those for which the researchers are unsure. When many 

in-doubt variables are omitted, researchers are faced with the risk of biased results and incorrect 

conclusions. When too many questionable variance parameters are included, the model can be 

come too complicated to estimate and estimation algorithms might not converge. 

 

2.2 Review of Issues in Sample Sizes Determination  

Although there is a large and growing literature on cluster randomized trials, the amount 

of publications on power and sample size is found to be much less than the literature that focused 

on model development and parameters interpretation. Let’s explore the reasons behind the lack 

of discussion on power and sample size assessment for cluster data. 

As Donner and Klar pointed out in their book (Donner and Klar, 2000),  one obvious 

reason that computing of sample sizes is more complicated in CRT is because the total sample 

size for each level must be determined. In a simple randomized trial, power is a monotonic 

function of the sample size when other factors are constant. This is not the case for clustered 

data. For example, in situations with a large intracluster correlation coefficient, increasing the 

number of subjects in each cluster or the total number of subjects up to a certain point may not 

have a significant impact on power. In fact, several authors have discussed methods of sample 

sizes and power optimization. In these methods, usually a range of sample sizes at each level are 

recommended along with their corresponding estimated powers (Snijders and Bocker, 1993; 

Raudenbush, 1997).  

Another reason why much less research has been devoted toward sample size 

determination is because the cluster design must be taken into account. In cluster trials, the usual 
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standard sample size assumption is violated because data on subjects within the same cluster are 

no longer independent. This level of dependency is measured and explained via the concept of 

intraclass correlation coefficients (ICC), the ratio of the between cluster variability to the total 

variability. However, computing the ICC is problematic due to the difficulty in estimating the 

variance. Estimates of ICC values are rarely available, and not all published records of the ICC 

are reliable (Hedges and Hedberg, 2007). This is understandable, however, because the 

magnitude of the ICC depends largely on the study design and outcomes, the intervention, and 

the covariate adjustment (Guittet et al., 2005). 

A third reason why there is much less discussion on sample size and power analysis is a 

misconception about the sample sizes itself, according to Donner and Klar (2000). Trials that 

enroll a large number of subjects usually give an impression of sufficient power, when in fact it 

may not be the case when the cluster effect is taken into consideration. For example, with a large 

ICC value the information drawn from any given individual in the cluster is redundant given the 

information available from other members in the same cluster. Thus, only adding more clusters 

will have an effect on power in this situation (Donner and Klar, 2000). 

Despite the difficulties in estimating statistical power and the required sample sizes in 

cluster studies, in recent years there has been considerable effort devoted to this topic. The 

resulting literature is seen in many textbooks and journals. Some main topics can be identified, 

including (1) the importance of the ICC and how to estimate its value, (2) issues involving the 

number of clusters and cluster size, and (3) analytical methods that provide formulas to compute 

the sample sizes in different situations. 
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2.2.1 The Impact of ICC on Sample Size 

It is established that the ICC has a direct relationship to the estimation of sample size and 

power analysis in a CRT. A number of authors have discussed this relationship (Hsieh, 1988; 

Murray, 1998; Donner and Klar, 2000). In a study on a complete cluster randomized design with 

normally distributed continuous outcome, Guittet et al. (2005) quantified the influence of the 

ICC on the power by examining power contour graphs under different values of the ICC. The 

authors concluded that underestimating the ICC can seriously under-power the trials. Together 

with lower number of clusters, the desired power might not be achieved. In another study, Maas 

and Hox (2005) explored the effect of the ICC on sufficient sample size and accurate estimation 

of parameters. The authors advocated that the estimated parameters and standard errors are 

biased downward when the cluster sizes are small (less than 30) and the ICC values are large 

(ranging from 0.10 to 0.30). These findings confirm the impact of ICC on sufficient sample size 

and parameters estimation, given the fact that most CRT used less than 30 clusters. 

Since knowledge of the ICC is essential for power and sample size determination in 

planning for a CRT, several researchers have attempted to address the issue of obtaining 

reasonable values for the ICC in realistic situations. One way to obtain this information is to use 

the ICC estimated by previous studies. For example, Murray et al. (2004) reported a summary of 

ICC values collected from 14 articles that provided information on the ICC for health-related 

outcomes.  In educational research, a compilation of ICC values of academic achievement and 

related covariate effects was provided by Hedges, together with an illustration of how to use 

these values to compute sample sizes under hierarchical models (Hedges and Hedberg, 2007). 

A reliable estimate of the ICC is certainly necessary to ensure robust sample size 

calculations. Several researchers dealt with the difficulty in getting accurate estimates of the 
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ICC, including methods to compute confidence intervals. One approach was presented by Feng 

and Grizzle, using the bootstrap method by simulating results from studies with the sample sizes 

that gave the observed estimates. The ICC computed from each simulation is substituted into the 

sample size formula and the distribution of powers is provided (Feng and Grizzle, 1992). In 

another paper, Turner et al., developed methods that allow for the uncertainty in previously 

obtained ICC under the use of prior distribution of the ICC in a Baysian approach. The authors 

noticed that uncertainty in the ICC will lead to some inaccuracy in the power of the study. 

However, the risk of low power is low in a design based on a large number of clusters (Turner et 

al., 2004).  

 

2.2.2 Issues Involving the Number of Clusters and Cluster Size 

In multi-level design studies, sample sizes for more than one level need to be addressed. 

As Hox discussed in his book, the maximum likelihood methods used commonly in most 

multilevel data analysis rely on an asymptotic assumption, which imply a sufficiently large 

sample size (Hox, 2002). This begs the question what is the smallest sample size that the analyst 

would be able to accept without threatening the validity of the asymptotic assumption. In most 

cases, the problem comes from determining the number of clusters. First, as several authors have 

discussed (Murray, 1998; Donner and Klar, 2000), many CRT have a small number of clusters 

due to logistic and cost issues. Adding a new cluster (clinic, school, organization) to the study is 

more expensive than adding more individuals. Second, it is often the objective of the 

investigators to evaluate the intervention at the whole cluster level, for example, interventions 

that aim to manipulate the social or physical environment (Murray, 1998).  



www.manaraa.com

 19
 

With respect to the impact of sample size of each level on power, a few simulation 

studies on two-level designs have confirmed that cluster level sample size is more important than 

the total sample size. Brown and Draper (2000) and Maas and Hox (2005) explored the influence 

of sample size on power. They showed that increasing the sample size at level 2 has a stronger 

impact on power than increasing sample size at level 1, under multiple ICC values. 

As previously noted, the number of clusters available is usually limited, but how low can 

this limit go? There have been some efforts to develop a rule of thumb in estimating sample size. 

Donner and Klar (2004) suggested that once the number of subjects per cluster exceeds  

1/(value of ICC), the power will not increase significantly as the cluster size increases. Thus, 

when the ICC is about 0.05 then it is of little value to enroll more than 20 subjects per cluster. In 

terms of accuracy in standard errors of the parameter estimates, Hox (2002) reviewed a 30/30 

rule, recommending that the researchers should recruit at least 30 clusters with at least 30 

subjects per cluster in order to obtain statistical accuracy.  

In addition to the sample sizes at each level, another issue is how to determine the sample 

size in cluster data where sample sizes are planned to be unbalanced. While many papers 

described the adopting of CRT, most of them assumed the same number of subjects per each 

cluster. The difference in cluster sizes is often ignored because there are very few appropriate 

and easy-to-use sample size formulas for this situation. Donner and Klar (2000) suggested 

replacing the number of individuals in each cluster by an average number of individuals over 

all clusters 

m

m  into the sample size formula for the balanced case, or to replace m  by , the 

largest anticipated cluster size in the sample. However, the authors admitted that there are some 

limitations in this method, in that it either underestimates or overestimates the sample size. 

Along the same line, Eldridge et al. (2006) studied sample size computation for both continuous 

maxm
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and binary data for unequal cluster sizes. In their paper, they defined the relationship between the 

design effect and the coefficient of variation of cluster size, which is the ratio of standard 

deviation of cluster sizes to the mean cluster size. Written in terms of the coefficient of variation, 

the appropriate design effect does not depend on the knowledge of individual cluster size. The 

researchers also concluded that when the coefficient of variation is less than 0.23, the effect of 

adjustment for unequal cluster size is negligible (Eldridge et al., 2006). 

 

2.2.3 Existing Methods for Computing Sample Sizes 

The increasing application of cluster randomized trials goes hand in hand with an 

increasing demand for power assessment and sample size determination. Although statistical 

methods to compute power and sample size have been developed years ago, most of these 

methods focus on the computation of power in studies with simple random samples (Cohen, 

1977; Chow et al., 2008). However, there has been some literature on methods that are 

particularly pertinent to the computing of sample sizes for CRT and multilevel design studies. In 

this review, we restrict our attentions to these publications. 

Several authors presented sample size formulas for intervention studies that use cluster as 

the unit of randomization. Hsieh (1988) provided sample size formulas and power contours for 

simple cluster randomization and stratified randomization in CRT with two levels. Hayes and 

Bennet (1999) proposed sample size calculation for CRT with three types of main outcomes: 

rates per person per year, proportions, and means. Donner and Klar (2000) considered sample 

size determination for randomized trials with continuous and binary data, under matched-pair 

and stratified designs. Eldridge et al. (2006) presented a series of sample size formulas for both 

continuous and binary data for unequal cluster sizes. 
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Power formulas for longitudinal data and repeated measured data have also been 

developed. Hedeker et al. (1999) derived formulas for sample size estimation and power 

assessment for longitudinal study. They compared the treatment means of two groups in terms of 

single degree of freedom contrasts across time. Roy et al. (2007) extended these results to cluster 

studies in which subjects are repeatedly measured over time, taking attrition rates into account. 

Their main interest is to test the treatment and time interaction for continuous Gaussian 

outcomes.  

Computing sample size for cluster randomized studies with dichotomous data is another 

topic of discussion in the literature. In a pioneering paper in 1997, Shih presented a method to 

compute sample size for correlated binary data based on generalized estimating equations. 

Expanding Shih’s work, Pan (2001) derived more explicit sample size formulas, allowing for 

different structures of covariance matrix. Dang et al. (2008), on the other hand, took a different 

direction and applied the generalized linear mixed model technique to compute the sample size 

for binary cluster data. This method has an advantage over previous approaches in that it allows 

the users to incorporate both the fixed effects and the random effects into the model.  

Due to additional factors that are involved in computing sample size for cluster data, 

some researchers have developed a less direct strategy to address the power and sample size 

questions. Their general approach is to maximize power by choosing the optimal number of 

clusters and cluster size that produce a specified target standard error of a particular parameter 

estimator. This method is based on the work by Snijders and Bosker (1993). The author used 

asymptotic approximations via simulations to obtain the formulas for the covariance matrix of 

the regression estimators. These formulas are then used to derive approximately optimal sample 

sizes that produce the desired standard error. Methods to estimate the variance of the fixed 
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effects estimators were also presented by Raudenbush and Liu (2000). The key idea of this 

approach is based on an optimization process. The variance for the parameter of interest is 

estimated first, and the sample size is computed later based on the corresponding standard error. 

The variance formulas were derived via random coefficient models. 

 

2.3 Review of Statistical Software Computing Sample Size in Correlated Data 

Computer programs and software are available for calculating statistical power or sample 

size in cluster randomized trials. This section gives a brief introduction on those programs and 

software. 

Most of the work reviewed in Section 2.2.3 was based on a basic principle to compute 

sample size. The logic of this principle is to compute the sample size for a subject level 

randomized trial and then inflate this sample size by the design effect to obtain the required 

sample size for cluster data. Campbell et al. (2004) use this key idea to develop a calculator that 

computes the appropriate design effect and thus the sample size, when the goals are comparing 

the means or the proportions in CRT. The underlying formulas were based on two-level 

completely randomized design with equal randomization and equal cluster sizes. The user is 

required to specify common factors addressing a sample size problem, including (1) the 

difference to be detected, (2) the standard deviation, and (3) the desired significance and power. 

The output is a table of number of clusters required for varying values of ICC and cluster size. 

The calculator can be downloaded at http://.abdn.ac.uk/hsru/epp/samsize. 

With respect to repeated measures data, Hedeker et al. (1999) introduced a software 

application named RMASS2. This is a free web-based application, available at 

www.healthstats.org, that builds on the concept discussed in their paper (Hedeker et al., 1999). 

http://.abdn.ac.uk/hsru/epp/samsize
http://www.healthstats.org/
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The software calculates the sample size for a two-level repeated measures design. It also allows 

for attrition and a variety of variance-covariance structures for the repeated measures. To date, 

this is the only software that handles sample size determination for studies that involve both 

clustered and longitudinal data. 

Along with their paper on determining the optimal design for a two-level design trial, 

Raudenbush and Liu (2000) presented the Optimal Design software to illustrate their ideas. In 

this free software (provided by the University of Michigan), restricted maximum likelihood 

method was used to estimate the variance of the treatment contrast. This variance is a function of 

sample size and will be minimized by different constraints. The software can compute sample 

size for a two-level design with both continuous and binary outcomes. Some extension was made 

to the three-level design with continuous data and treatment randomized at level 3. The software 

can be found at http://sitemaker.umich.edu/group-based/optimal_design_software. 

Snijders and Bosker developed the PiNT (Power iN Two-level design) program which 

estimates sample size using simulations. In the related paper (Snijders and Bosker, 1993), the 

authors derived the asymptotic formulas for standard errors of the fixed effects, e.g. the treatment 

effect, in a two-level design. Since these formulas are complicated, PiNT was written to help the 

users with their calculation. As the name suggests, this software is restricted for two-level 

studies. Other assumptions include normal response model and equal cluster size. The program 

and its manual are available at http://stat.gamma.rug.nl/snijders/multilevel.htm#progPINT. 

Most recently, two software programs were made available to researchers in computing 

sample size for cluster data, both written at approximately the same time. The first is the ML-

DEs (MultiLevel Design Efficiency using simulation) program, developed by Cools et al. (2008). 

ML-DEs is a sequence of R-scripts that set up simulation studies in order to compare the 

http://sitemaker.umich.edu/group-based/optimal_design_software
http://stat.gamma.rug.nl/snijders/multilevel.htm#progPINT
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efficiency of multilevel designs conditioned on a budget and with different sample sizes and 

different costs of sampling units. This is a free software package with password required from 

the authors. To run the software, however, the program R and another package called MLwiN 

are required. Information about ML-DEs can be found at 

https://perswww.kuleuven.be/~u0032822/ML-DEsimulation.html. 

Around the same time ML-DEs was introduced, MLPowSim was developed in 2008 and 

published by Browne and Golalizadeh in 2009. This is a free program designed to perform 

sample size/power calculations in multilevel models via a simulation method similar to PiNT.  

However, MLPowSim is more comprehensive that PiNT since it can handle continuous, binary, 

and count data for both two and three level designs with randomization at level three. The 

program and related information can be found at http://seis.bris.ac.uk/~frwjb/esrc.html. 

 

2.4 The Significance of Sample Size Determination in Three-Level Designs 

 Despite the fast growth observed across different research areas, the evaluation of 

required sample sizes for three-level designs has been generally overlooked in the literature. 

Although some work has been devoted to this topic of interest, a review of past studies shows 

that there are at least three issues that need improvement and invite more discussion: (1) issues in 

study designs with three-level structure, (2) issues with the statistical methods, and (3) issues in 

analysis software and programs. A closer look at these gaps in the literature will explain the 

motivation behind our work. 

 

 

 

https://perswww.kuleuven.be/%7Eu0032822/ML-DEsimulation.html
http://seis.bris.ac.uk/%7Efrwjb/esrc.html
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2.4.1 The Gap in Study Designs with Three-Level Structure 

It can be seen from previous sections of this chapter that although methods to compute 

sample size and power in cluster randomized studies have been widely discussed in the literature, 

most publications only focused on the two-level design.  In reality, however, researchers might 

encounter situations in which the designs and data have more complicated structure.  

Examples of three level-design experiments are seen often in practice. An experiment in 

education can involve measurements of students within classrooms and classrooms within 

schools. In medical and health intervention research, evaluations might be taken from patients 

within physicians and then physicians within centers. It is not uncommon that a researcher might 

choose to ignore the cluster effect of classrooms (level 2) and treat the educational study as a 

two-level design in which students are nested within schools. Similarly, one can “combine” the 

effects of physicians and centers into one and view the medical research example as two-level 

where clusters are the center-physician pair. The important point is that the three-level structure 

is inherent in the design and embedded in the data mentioned in the above situations —

regardless of the fact that the analysts choose to take the three-level structure into consideration 

or not. 

The issue here is not whether to ignore one level of the data or to combine two levels into 

one, but rather to ensure that the studies are planned and analyzed in the most appropriate way. 

The most prudent and appropriate strategy in any statistical work is to stay faithful to the data 

structure and to entertain as much as possible all the features driven by the study design. This 

same principle remains to be true when planning for sample size and undertaking power analysis 

in three-level studies. In other words, all three levels should be considered in the design and 

planning stage for such trials. It has been well known in the literature that ignoring the cluster 
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effect of one level can lead to inaccurate power and errors in parameter estimates (Murray, 1998; 

Donner and Klar, 2000). 

Another point that lacks of discussion amongst researchers is that most sample size 

formulas seem to apply strictly to designs where randomization takes place at the highest cluster 

level. There are more choices of study designs in reality. These choices involve, for example, the 

allocation of treatments at the second or first level. Although the assignment to treatment at 

different levels has a strong impact on the sample sizes formulas, this issue in the study design is 

rarely addressed in the literature. 

 

2.4.2 The Gap in Methods Related to Computing Sample Size  

 The technical issues and appropriate statistical models to compute sample size for three-

level design studies are still in debate and need more development. Reviewing published 

literature reveals some room for further research. For example, in a thorough study, 

Konstantopoulos (2008) investigated different sample sizes for three-level randomized designs in 

three different situations when treatment assignment is given at the first, second, and third level. 

Based on mixed models ANOVA/ANCOVA, the author introduced sample size formulas for 

each different case, allowing for the use of covariates. Unfortunately, his method is restricted 

with continuous Gaussian data and has not been expanded to binary outcomes.  

Research methodologists have also attempted to derive explicit formulas for sample size 

and power assessment in three-level studies. In their paper, Heo and Leon (2008) developed 

closed form power function and formulas for sample size to detect an intervention effect for a 

three-level data. Along the same line, Teerenstra et al. (2008) presented similar formulas but 

expressed the design effects in terms of Pearson correlation. Although both of the above studies 
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provide some guidelines in the choice of number of clusters and number of subjects per cluster 

for a three-level experiment, they only consider randomization at the third level and do not 

handle studies with binary outcomes. 

Most recently, Teerenstra et al. (2010) published an interesting work in which they 

derived sample size formulas for three-level CRT using generalized estimating equations (GEE). 

Their approach is actually an extension of Shih’s (1997) and Pan’s (2001) methods, except that 

the design effect was derived in a more elegant way. The sample size formulas presented by 

Teerenstra et al.(2010) are convenient in that they can be used for both dichotomous data and 

continuous data. However, a drawback of these formulas is that they are based a population-

average approach which is not useful when the objective is to make inference about the 

participants. In addition, the authors did not consider studies in which randomization takes place 

at the second or first level. 

 

2.4.3 The Gap in Analysis Software and Programs 

 Although in some situations a simple spreadsheet program is sufficient enough to 

compute power and sample size, in many other cases the formulas presented for multilevel 

designs are fairly complicated. Few software programs specializing in sample size estimation are 

available for CRT. The problem is, as encountered in the methodology literature, most of these 

programs apply only to two-level designs. Examples include PiNT, RMASS2, and Campbell’s 

sample size calculator. 

 To date, there are only a few statistical programs that allow for computing sample size of 

three-level models. However, there remain some limitations in these programs and some areas 

leave room for expansion. For example, although Raudenbush and Liu (2000) did incorporate a 
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short section about three-level data in their optimal design software manual, the tool they 

provided can only handle continuous normally distributed data with treatment given at the third 

level. In addition, the program does not compute sample size for three-level design with binary 

data. 

The software MLPowSim presented recently by Browne and Golalizadeh (2009) seems 

to be the most comprehensive package that handles sample sizes in CRT for continuous, binary, 

and count data. However, the method relies heavily on simulations. It is complicated to use, and 

it requires several inputs from the users. Furthermore, this software does not compute sample 

size for binary data with three-level designs, and does not allow for randomization at different 

levels. 

 

2.4.4 Goals and Motivation 

The discussion above emphasizes the importance of sample size determination in three-

level designs. Given the increasing use and the complexity of the three-level models, there is a 

need to extend the methodological issues considered and the type of applications examined. 

Although in principle, the extension from the two-level to three-level designs seems to be 

straightforward, the task is not simple and trivial. Adding another level means adding more 

complexity to the design and another sample size to determine. Not only the resulting models 

will be difficult to follow from a conceptual point of view, but the sample size formulas might be 

difficult or even impossible to derive. Given the importance of the topic, it is worthwhile to 

explore different strategies and different applications to address the issue of computing sample 

size in three-level cluster data.  
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In the work reported here, we propose a method to derive sample size formulas using 

generalized linear mixed models specifically for three-level designs. We will consider situations 

in which the treatment is randomized at the first, second, and third levels for both continuous 

normally distributed outcome and binary outcome. We will calculate power and sample size for a 

two-group (treatment and control) comparison. These methods will be implemented in a series of 

menu-driven SAS macros. The intent is not to present a method that is superior to current 

research studies, but rather to present a more comprehensive approach to address the same 

research problem. Our primary goals are to (1) gain more understanding on the theory behind 

statistical power and sample size in CRT with three level designs, (2) develop an alternative form 

of the sample size formula using available information obtained from the researchers, and (3) 

provide a user-friendly program to compute sample size for cluster randomization with three 

levels. 
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Chapter 3 

Relevant Statistical Concepts 

 

 

 Although it is clear that the assessment of sample size and power is study-specific, some 

basic requirements need to be established in order to answer most sample size problems. The 

computation of sample size depends on several factors, including the expectation of the 

researchers, the selection of the study design, the characteristics of the data, and the statistical 

methods chosen by the analyst. Without sound understanding of these factors, the estimation of 

sample size would be reduced to merely a guessing game.  

 Murray (1998) discussed specific requirements for sample size estimation, such as the 

form and magnitude of the intervention effect, the test statistic and its distribution under the null 

hypothesis, and the variance of the estimated intervention effect. Although these concepts 

generally apply to any sample size problem, sample size consideration in multi-level designs is 

further complicated by numerous factors, including the number of units for each level, the 

magnitude of the intraclass correlations (ICC), the presence or absence of the random effects, 

and the correlation structures specified in each model. 

This chapter provides a brief review of some relevant statistical concepts that are 

essential to the estimation of sample size and power analysis in cluster studies. We begin with a 

refresher on the concept of statistical power and sample size assessment in Section 3.1, followed 

by some basic characteristics of the ICC in Section 3.2. Section 3.3 revisits the discussion in the 

literature on power and sample size in the simplest case of multilevel data, the two-level design. 
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Finally, Section 3.4 offers a review of generalized linear models and generalized mixed models, 

the statistical methods that we utilize in this work. 

 

3.1 Statistical Power and Sample Size Assessment  

The concept of statistical power and sample size determination has been studied 

extensively in the literature. Excellent discussions of this topic can be found in basic statistical 

works such as Cohen (1988), Murphy and Myos (2004), Chow et al. (2008). In his book, Cohen 

(1988) presented a detailed treatment on power analysis and the corresponding formulas to 

compute power, together with numerous tables of sample sizes for different situations. Murphy 

and Myors (2004) provided an overview and introduced a set of procedures for power analysis 

under the context of general linear model. Chow et al. (2008) discussed sample size calculations 

for various study designs in clinical research. Power and sample size considerations are also 

covered in textbooks written specifically for cluster randomized trials, such as Murray (1998) 

and Donner and Klar (2000). The discussion in this section relies heavily on these 

aforementioned publications. 

 

3.1.1 Hypothesis Testing 

One of the most important objectives of statistics is to make inferences about unknown 

population parameters based on information drawn from sampled data. Methods for drawing 

inferences about parameters can be classified into two types: (1) to estimate the values of the 

parameters and (2) to establish decision rules about parameter values and apply these decision 

rules based on the data. The later method is referred to as hypothesis testing, a topic that we will 

elaborate in this section.  
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A hypothesis is an assertion or conjecture concerning one or more populations of interest. 

In other words, it is a statement about population parameters (Casella and Berger, 2005). In 

hypothesis testing, research hypotheses are constructed first, leading next to the statistical 

hypotheses. A research hypothesis is a speculation or supposition created by the researchers 

based upon past observations or previous experimental outcomes. A statistical hypothesis is a 

statement that can be evaluated by appropriate statistical methods and techniques (Daniel, 2009). 

Hypothesis tests are common in many situations in which a theory or a speculation is to 

be tested against observation. For example, a medical researcher might hypothesize that a new 

drug is more effective than a traditional drug in treating a certain disease, or an educator might 

claim that two methods of teaching are equally effective. The role of statistics in hypothesis 

testing is to make decisions when comparing the observed sample with the theory: does the 

sample agree with the researcher’s hypothesis? Should we support the hypothesis? What is the 

probability that we will make a wrong decision? And particularly, how large is the sample size 

required to reduce the chance of error and to reach the decision correctly? (Cohen, 1988) 

The structure of hypothesis testing is formulated with two statistical hypotheses: the null 

hypothesis and the alternative hypothesis. The null hypothesis is usually denoted by the symbol 

H0. Often, the value chosen in the null hypothesis is a historical value or a claim. For example, 

suppose that on average a traditional drug cures 50% patients from a certain disease, then we 

might use a null hypothesis H0 : p=0.5 for a study comparing the effect of a new drug to a 

traditional drug.  In general, the null hypothesis is set up for the purpose of being disproved. 

Thus, the complement of the conclusion that the researchers seek to prove is the null hypothesis. 

Any hypothesis that is opposite to the null hypothesis is called an alternative hypothesis, denoted 

by the symbol HA. The alternative hypothesis is a statement of what the researchers believe to be 
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true if the sample data calls for a rejection of the null hypothesis (Daniel, 2009). For instant, in 

the new drug experiment if we believe that the new drug is more effective than the traditional 

one, the alternative hypothesis can be stated as HA: p>0.5.  

 

3.1.2 Statistical Power 

The purpose of any statistical test is to reach a conclusion. One could either reject or not 

reject the null hypothesis, but hypothesis testing does not lead to a proof of a hypothesis in 

general. It merely implies whether the alternative hypothesis is supported or not supported by the 

given data. If the null hypothesis is not rejected, it means that the data do not provide enough 

evidence to refute it. On the other hand, rejection of the null hypothesis simply indicates that the 

sample evidence is sufficient enough to support the alternative hypothesis.  

What if we make a wrong decision? The states of nature can be partitioned into two 

options, either H0 is true or H0 is not true. Similarly, the decisions lie between the choices of 

whether to reject or not to reject H0. Suppose the researcher rejects the null hypothesis when it is 

in fact true, then a type I error has been committed. On the other hand, if the researcher 

mistakenly retains the null hypothesis when it is indeed false, then a type II error arises. The two 

types of errors are illustrated in Table 3.1. 

 

Table 3.1: Probabilities Associated with a Statistical Test 

                                     Our Decision 
Truth of H0 Do not reject H0 Reject H0 
H0 is true Correct decision (1 ) Type I error ( ) 
H0 is false Type II error ( ) Correct decision (1 =Power) 
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The maximum type I error probability which a researcher is willing to risk is called the 

level of significance of a test, denoted by . Usually   is specified in advance before the sample 

is drawn so that the results will not influence the level of significance of the test. The probability 

of making a type II error is denoted by . In hypothesis testing, it is desirable to choose   and 

  as small as is practical. 

Power is the probability of rejecting the null hypothesis when it is in fact false. To phrase 

differently, power is the probability that the test will be able to detect that the alternative 

hypothesis holds when that is the true hypothesis. It should be noted that both power and type I 

error probability are functions of the interested parameters. In Table 3.1, power is represented by 

the quantity 1  , or one minus type II error probability. 

One common question is how much power we can expect to achieve given a level of 

significance. A decision not to reject H0 (first column) means the researchers either made a 

correct decision or committed a type II error. By the same token, a choice of rejecting H0 

(column 2) means the researchers either made a correct decision or to committed a type I error. 

Thus, it is incorrect to criticize a researcher who rejected H0 to have committed a type II error. In 

contrast, a researcher who did not reject the null hypothesis is exposed to type II error and his 

study might be vulnerable to the lack of power. One cannot conclude a new drug is ineffective in 

a study with low power because such study would have little chance of detecting a statistical 

difference between the two drug treatments. (Donner and Klar, 2000). 

 

3.1.3 Sample Size Calculation in General 

Sample size calculation is a process of computation that yields the size of the sample 

required to test a specific statistical hypothesis stated by the researchers. In general, to determine 



www.manaraa.com

 35
 

a sample size, researchers are required to specify four pieces of information (1) the significance 

level, (2) the desired power, (3) the effect size, and (4) the standard error of the effect size. We 

will discuss these concepts in the context of a clinical trial testing the effectiveness of a treatment 

between intervention and control groups. 

As defined previously, the significance level represents the probability of mistakenly 

rejecting the null hypothesis, and the power reflects the probability of correctly rejecting the null 

hypothesis. In a typical experiment, a significance level of 5% is chosen. In the literature, a 

conventional desired power is often set at 80% or 90%. 

The effect size is a measure of the difference between the two groups that is judged to be 

clinically important. In general, if the researchers are settled for a large effective size, a smaller 

sample size is needed. However, if the effective size is relatively small, a larger number of 

subjects will be required. Researchers should keep the structure of the effect size as simple as 

possible. For example, if several differences amongst the means are of interested, only one 

should be chosen as the primary outcome. Similarly, if there are different treatment groups, only 

two that relate to the contrast of primary interest should be considered (Murray, 1998). 

Finally, knowledge of the standard deviation of the main outcomes is important for 

sample size estimation. As a general rule, a very precise method of measurement will detect any 

given difference with a much smaller sample size compared to the sample size required with a 

less precise method of measurement. In cluster randomized trials, the knowledge of standard 

deviation is usually connected to the expression of the variance of the estimate of the 

intervention effect, which we will discuss later. 
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Snijders and Bosker (1993) proposed the following formula to link the four quantities 

required in a sample size calculation together, under the normal distribution assumption for the 

variable associated with the effect size: 

    11 /2Z Z
SE 

    

In this formula,  is the significance level of the test, 1   is the power of the test,  is 

the effect size,  SE  is the standard error of the estimated effect size, and 1 ( 2)Z   and 1Z  are 

the quantiles of the standard normal distribution associated with the values of 1 2  and 1  .  

It can be seen from the above formula that given three out of four factors, the fourth 

factor can be computed. In many types of designs in practice, this formula is a valid 

approximation that can be used to compute the sample size required for a certain level of power. 

In multilevel designs, however, more than one level of sample sizes is needed. Difficulty also 

arises in determining the standard error of the estimated treatment effect in cluster randomized 

trials. We will turn to the details of this discussion later in Section 3.3. 

 

3.2 Intraclass Correlation 

The sampling of subjects into experiments via clusters introduces special considerations 

that need to be addressed in sample size determination and power analysis. Outcomes measured 

from subjects within the same clusters tend to be similar and are not independent. In the 

literature, this level of dependency—the effect of clustering—is estimated by the measurement 

of the intraclass correlation. In this section, we will discuss the effect of clustering in two-level 

designs and then expand the idea to three-level designs. 
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3.2.1 The Effect of Clustering in Two-Level Designs 

 Consider an experiment in which sample of clusters of individuals are randomly assigned 

to two experimental groups: treatment and control. Let represent an observation from the iijkY th 

subject within the jth cluster within the kth treatment, and let the variable have a common total 

variance of 

ijkY

2 . Let all clusters have the same n number of subjects, and each of the two 

treatment arms have the same number of m clusters. The variance of a cluster mean is  

 
2

CVar Y
n


  

where 2 is the within cluster variance. 

 Furthermore, assuming constant variance across the clusters, the variance of the treatment 

mean can be written as: 

   
2

TVar Y
mn


  

 Since the units of randomization are clusters, the dependency between individuals within 

the same cluster exists. In such situation, the total variance can be decomposed into two 

components, a between cluster variance 2
B  and a within cluster variance 2

W , so that 

2 2
B W

2    . 

 To take into account the effect of this dependency, we introduce the quantity intraclass 

correlation, denote by  , into the variance formula. Here, the parameter  can be viewed as the 

pair-wise correlation coefficient between any two measurements in the same cluster, meaning 

. With the assumption that  ',ijk i jkCorr Y Y     is positive, we can also interpret   as the 

fraction of the total variation in the data that is attributed to the unit of assignment. In other 
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words,  is the proportion of the total variance that is accounted for by the between cluster 

variation: 

2

2 2
B

W B


 




 

Methods to estimate the ICC were reviewed in Chapter 2. A classical approach is to apply 

the analysis of variance among and within cluster. In this method, the ICC is obtained by the 

following equation: 


 

2

2 21
B

B W

SMSC MSW

MSC n MSW S S
 
 

  
 

Where:  

 MSC and MSW are the mean square error between and within cluster respectively.  

 
 MSC

n




MSW
 and are the estimates of 2

B
2
B

2
WS MSW  and 2

W respectively. S

 

With clusters serving as the units of randomization, the variance of cluster mean now takes a 

different form that reflects the variation between groups and within members: 

 
2

2W
C BVar Y

n

    

And the variance of treatment mean is: 

 
2 2
W B

TVar Y
mn m

 
   

Written in terms of the total variance and  , the final formula yields: 

      
2

1 1TVar Y n
mn

       

A few implications can be drawn from the above equation: 
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 When the estimated value of   is zero, the formula for the variance of treatment mean is 

reduced to the usual form of the variance of treatment mean under the assumption of 

independence amongst cluster members. On the other hand, when  =1, we have the total 

dependence situation. In this case, all measurements in a cluster are identical and the total 

information gained from a cluster is no more than information gained from a single 

member (Donner and Klar, 2000). 

 The variance of the treatment mean in cluster randomized trials equals the variance of 

treatment mean under the assumption of independent errors multiplied by a quantity of 

 1 1n    in two level-designs. This quantity is called the variance inflation factor, or 

the design effect. As we will see later, the design effect plays an important role in the 

estimation of sample size (Murray, 1998). 

 Since the value of   is always positive, the design effect increases when   increases 

and when the cluster size n increases. When n is large the design effect can be large even 

with a small ICC. Thus, the variance of treatment mean is always larger in cluster designs 

than in studies without cluster effect and with equal total number of subjects (Donner and 

Klar, 2000). 

 Analytical methods that treat clusters as the unit of analysis and take proper consideration 

of the cluster effect can provide the tests for the treatment effect. However, given all 

other factors constant, the tests might have lower power than would be obtained in 

independent cases (Hedges and Hedberg, 2007). 
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3.2.2 The Effect of Clustering in Three-Level Designs 

The concept of the intraclass correlation as a measure of proportional variation can be 

extended to designs with more than two levels, the only difference is that we now have more 

variance components involved and there are different ways to define and interpret the intraclass 

correlations. 

Consider an experiment involving a three level design in which patients are nested within 

physicians, and physicians are in turn nested within centers. The total variance in the outcome 

can be decomposed into three components: The between patients nested in physicians (level 1) 

variance 2
e , the between physicians nested in centers (level 2) variance 2

p , and the between 

centers (level 3) variance 2
c . Thus, the total variance is 2 2 2

T c p
2
e      . In the context of a 

three-level design, two definitions of the intraclass correlations are being circulated in the 

literature.  

The first method specifies the intraclass correlation at the physician level as 

2

2

p

T

r



  

and at the center level as 

2

2
c

T




  

  

The second method defines the intraclass correlation at the physician level as 

  
2 2

2

p c

T

r
 



  
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and at the center level as 

2

2
c

T




  

The choice of which method to apply depends on the goal of the analysts. The first 

method should be used when our focus is on decomposing the variance components across all 

levels, or on estimating how much variation is explained by each level (Hox, 2002). On the other 

hand, the second method allows for an estimation of the correlation between two randomly 

chosen subjects in the same group. For example, in the second method  represents the 

correlation between two patients related to the same physician, and  also takes into account that 

two patients seeing the same physician are visiting in the same center. In the same context, 

r

r

  

represents the correlation between two patients in different centers (and thus different 

physicians). Some authors view the intraclass correlation under the second method as an analogy 

to the Pearson correlation (Teerenstra et al., 2008). 

Similar to what we have seen in the two-level designs, the variance of the treatment 

means in three-level situations can be written as a product of the variance that would be obtained 

if all outcomes are independent and a variance inflation factor. This statement will be discussed 

with further details in Chapter 4 and Chapter 5. 

 

3.3 Computing Sample Size in Two-Level Cluster Designs 

 Before proposing the methods to compute sample size for three-level cluster randomized 

studies, a refresher on how the sample size formulas for two-level designs were derived would be 

helpful. First, we will review how sample sizes are computed in an individual randomized 

clinical trial. Next, we will discuss how the same formula is extended to a two-level cluster 

design. 
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3.3.1 Power in a Simple Clinical Trial 

Consider a simple clinical trial in which 2N subjects are equally randomized into two treatment 

groups. Let  be the observation of the iijY th subject in the jth treatment. The model can be written: 

ij i ijY     

where  j=1,2 and i=1,..,N and 2~ (0, )ij N  . 

Suppose our hypothesis is to test the difference between the treatment effects: 

0 1:H 2       versus       1 1:H 2   

Denote the estimates of the difference in the two treatment means as 

  
1 2Y Y    

Let 
2

   be the estimated variance of that difference under the null hypothesis. 

Assuming equal variances in the two groups, then: 

  2
2 2

N

     

A Z-statistic can be used to test the treatment mean difference. 



 2
z

 


  

Under the null hypothesis of no treatment effect, .We reject the null hypothesis when ~ (0,1)Z N

/2| |Z Z  

Under the alternative hypothesis that 1 2    , then , where *~ ( ,1)Z N 


*

2


 

                       

The corresponding power is given by 
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   
 

/2 /2

*
/2

| |

1

1

P Z Z P Z Z

Z

 

 



  

  

 

 

In order to achieve the power of (1 )100% , we need 

*
/2Z Z        or    *

/2Z Z     

Substitute this into the equation for * above, we get 


/22

Z Z 


 

   


/22

2
Z Z

N

 



   

From here, we obtain the usual sample size formula testing the difference between the two means 

  2 2

/2

2

2 Z Z
N

 



  

 

3.3.2 Power in a Two-Level Cluster Randomized Trial 

Now assume that a number of m clusters, rather than individuals, are randomized to each 

treatment group. Furthermore, assuming each cluster has n subjects and the clusters were chosen 

randomly from a larger population. Thus, the total sample size is N=mn. The model becomes: 

ijk i j ijkY C T      

 where i=1,…,m, j=1,2, and k=1,…,n 

 Ci represents the cluster effect   

 Tj represents the treatment effect 

 2 )~ (0,ijk eN  and 2 )~ (0,i cC Normal   
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The intraclass correlation is defined as 

2

2 2
c

c e


 




 

Where 2
c  is the between cluster variance and 2

e  is the within cluster variance.  

The total variance of is ijkY 2 2
e c

2     

As derived in Section 3.2.1, the variance of the difference in estimate treatment means is 

 
 

2
2 2

1 1n
mn

        

Substitute this into the sample size equation  


/22

Z Z 


 

   

The total sample size is now 

    
2 2

/2

2

2 1 (Z Z n
N

  1) 


  
  

Compared to the simple randomized clinical trial, the sample size in two-level cluster 

randomized trial is “inflated” by the variance inflation factor of  1 ( 1)n   . Since this variance 

inflation factor depends on the variance of the treatment means, the problem of computing 

sample size in cluster data really boils down to the problem of deriving the variance of treatment 

effect. 

 

3.3.3 Power and the Effect of Randomization 

Randomization, an important component of experimental research, can be accomplished 

through two major types of design (1) a subject-randomized design and (2) a cluster-randomized 
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design. In Section 3.3.2, we discussed the derivation of sample size formula in two-level designs 

in which group of subjects (clusters) was assigned to different treatments. However, there are 

many situations in which for a given effect size, the randomizations can occur at different levels.  

Unit of randomization plays an important role in computing sample size and power 

analysis. For example, the model presented in Section 3.3.2 is no longer true if the individuals, 

instead of clusters, are randomized. Raudenbush and Liu (2000) discussed this issue in a two-

level design applied for multisite experiment, where persons within a site are randomly assigned 

to one or two more treatments. The sample size formula in this case is more complicated, since it 

takes into account the possibility that treatment effects can vary across different sites. 

The situation is more complicated in three-level designs, when randomization could 

happen at any of the three levels. For instant, in the example discussed in Section 3.2.2, 

treatment assignment could be done at the level of patient, or provider, or practice. We will see 

in later chapters how the level chosen for random assignment will affect the variance-covariance 

structure of the statistic model and the corresponding sample size formulas. 

 

3.4 Generalized Linear Mixed Models 

 In the course of this work, we will present methods to compute sample size and power for 

three-level cluster designs based on generalized linear models (GLM) and generalized linear 

mixed model (GLMM) approaches. To stimulate further interest, this section pulls together some 

basic concepts of the GLM and GLMM. The concepts introduced here will recur frequently in 

subsequent chapters. Understanding the definitions and their relevance is important, especially 

for looking at their applications in the context of three-level design. The discussions in this 

section are drawn mainly from Brown and Prescott (2006) and Littell et al. (2007). 
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3.4.1 Linear Mixed Models 

Consider a normal linear model  

1 1 2 2 ...i i i p ipy x x x i                   

 2~ 0,i N   

In this model, the regression coefficients betas represent the fixed effects and the error term is 

the only random effect. In matrix notation, it can be written as 

   Y =     Xβ + ε

      2~ ,n nN ε 0 I

Where  is the vector of the observed values  1 2, ,..., 'ny y yY 

  1 2, ,..., 'p  β  is the vector of the fixed effects 

  1 2, ,..., 'n   ε    is the vector of the residuals 

The normal mixed model extends the above fixed effect model by including additional 

random-effect, random coefficients, or covariance terms in the residual variance matrix. Normal 

mixed effects are often appropriate for representing clustered and dependent data. In normal 

mixed models, the random effects are assumed to follow a distribution and the fixed effects are 

considered constant. In matrix notation, a typical normal mixed model takes the form 

  Y Xβ Zγ ε       

where   

Y is an n x 1 vector of observed values 

X is an n x (p +1) design matrix (of column rank p) 

β is a (p + 1) x 1 vector of fixed effects (including the overall mean ) 

Z is an n x q second design matrix for the random effects γ  
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γ  is a q x 1 vector of random effects, where  ~ ,qNγ 0 G and  2 2 2, ,...,c c c  G   

ε  is an n x1 error vector where  ~ ,nNε 0 R and 2R I  

Under the above assumptions, the variance of the observation vector can be written as 

( ) ( ) ( )V V V     y V Zγ e ZGZ R  

To give a general idea on the structure of V , consider a simple example with a study of two 

centers, each with two patients, one in each treatment. Here we have p=2 and q=2 (thus the total 

sample size is 4).  

111

221

312

422

y

y

y

y

 
 


 
 

y 


,     

111

221

312

422






 
 
 
 
 
 

ε

 
1 1 0

1 0 1

1 1 0

1 0 1

 
 
 
 
 
 

X , 
1

2






 
 
 
 
 
 

β , , 

1 0

1 0

0 1

0 1

 
 
 
 
 
 

Z 1

2



 

  
 

γ   

 
 
Then the variance covariance matrix V in this case is  
 

2
2

2

2 2 2 2 2

2 2 2 2 2
2

2 2 2 2 2

2 2 2 2

1 0

1 0 1 1 0 00

0 1 0 0 1 10

0 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

c

c

c c c c

c c c c

c c c c

c c c c






    
    


    

2  

 
               
 

   
       
   
  

    

V I

I

 







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Note that specifying the random effects is a convenient way to form the structure of the 

variance-covariance matrix. The above model is equivalent to a fixed effects model with the 

normally distributed residuals that share the same variance-covariance matrix as specified. In 

other words, we can write   Y = Xβ + ε

With the same and Y β  and where is defined as above. ~ 0,Nε V



V

 

3.4.2 Generalized Linear Models (GLM) 

 Normal linear mixed models work under two distinct assumptions: the errors and random 

effects are normally distributed, and the response variable is modeled directly as a linear 

combination of the fixed and random effects. These assumptions are not met in many practical 

situations where data are non-normal, such as studies with binary or count outcomes. In these 

situations, Generalized Linear Models are available for fitting non-normal fixed effect models 

with three basic components. 

The first component is called the random component, referring to the response variable 

.  belongs to the exponential family with a probability density function with 

the following general form: 

 1 2, ,..., ny y yY Y

        ; exp / ,i i i i i if y y b a c y          

where  is a location parameter and  is a dispersion parameter that only appears in distribution 

with two parameters (such as normal distribution). The forms of the function a, b, and c are 

different in different distributions.  

 For one-parameter distributions, the general form can be simplified to: 

      ; exp /i i i i i if y y b a c       y  
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It can be shown that the mean and variance of the random component can be written in 

terms of a and b as follows 

      'E y b    

      ''Var y b   

Hence, we can find   by  1'b  . 

 The second component relates a vector  1 2, ,..., n  η to the model fixed effects β  and 

the predictors by a linear combinationX η Xβ . This linear combination of the fixed effects is 

called the linear predictor. 

The third component is a link function that links the linear model to the mean of Y 

through the formula 

 g  μ η Xβ   where g(.) is monotonic and differentiable 

 Eμ Y  

Note that the normal linear model is a special case of GLM in which the link function is the 

identity link  g   . 

 In general, the GLM can be defined using the matrix notation similar to normal models as 

follows 

 y μ ε  

 g μ Xβ  

Thus, the variance-covariance matrix of this model is 

     Var Var y ε V
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For a sample of n observations, the variance takes the form  V AB ,where  idiag a   A   

and  ''idiag b  B  , both are n x n matrices. For example, in the binomial distribution with 

n=4, we would have 

1

2

3

4

1/ 0 0 0

0 1/ 0 0

0 0 1/ 0

0 0 0 1/

n

n

n

n

 
 
 
 
 
 

A  and 

 
 

 
 

1 1

2 2

3 3

4 4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 
 

 
 

 
  
 
 

  

B  

 

3.4.3 Generalized Linear Mixed Models (GLMM) 

 The Generalized Linear Mixed Models are the extended version of Generalize Linear 

Models to accommodate models with random effects. The extension is carried out through the 

link function. Here, the general model takes the same form of 

 y μ ε  

However, the random effects are now added to the link function 

( )g  μ Xβ Zγ      

where  

 Y is an n x 1 vector of observed values 

 X is an n x (p +1) design matrix (of column rank p) 

 β is a (p + 1) x 1 vector of fixed effects (including the overall mean ) 

 Z is an n x q second design matrix for the random effects γ  

 γ  is a q x 1 vector of random effects independent of ε , and  ~ qNγ 0,G  

 ε is the vector of errors and E(ε )=0 and Var(ε )= AB where A and B were defined 

previously. 
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The key difference between the normal mixed model and GLMM is that ε  is not 

necessarily assumed to be normal.  

The variance of y is 

( ) ( ) ( ) ( )V V V V    y V μ ε μ AB . 

To illustrate the structure of A and B, consider a simple data set with 6  Bernoulli   

observations, we then have: 

  

 
 

 
 

 
 

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

t t

t t

t t

c c

c c

c c

 
 

 
 

 
 

 
  
 

  
 

 
 

  

B

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 
 
 
 

  
 
 
 
 

A  

Discussion on how GLMM is applied in computing sample size for binary data will be 

presented with more details in Chapter 5. 
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Chapter 4 

Power and Sample Size for Continuous Outcome 

 

 

In Chapter 1, we introduced a few examples with three-level cluster design studies and 

different possible outcomes. In the simplest situation, these outcomes are continuous and 

normally distributed. In this chapter we present methods to compute power and sample size 

assuming a linear mixed model. We will derive the power formulas and the general forms of the 

variance structures for six different situations: (1) randomize at level three, (2) randomize at 

level two without interaction, (3) randomize at level two with interaction, (4) randomize at level 

one without interaction, (5) randomize at the level one with interaction between treatment and 

level three and (6) randomize at the level one with interaction between treatment and level two. 

 

4.1 Linear Mixed Model Approach 

Consider a three-level study design in which patients are nested within physicians, and 

physicians are in turn nested within centers. Let ijky be the response observed at kth patient, jth 

physician, and ith center. Furthermore, let N be the total number of centers, p be the number of 

physicians in each center, and n be the number of patients visiting each physician (balanced 

design). The total sample size is T=Npn. 

Assuming both level two (physician) and level three (center) are random effects and no 

covariates are included, the total variance in the outcome can be decomposed into three 

components: the within physicians and between patients (level 1) variance 2
e , the between 
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physicians (level 2) and within centers (level 3) variance 2
p , and the between centers (level 3) 

variance 2
c .  

The intraclass correlation between patients nested within the same physician and the 

same center can be specified by: 

  '

2 2

2
, p c

ijk ijk
T

corr y y r
 



   

The intraclass correlation between patients within the same center but under different physicians 

can be specified by: 

 ' '

2

2
, c

ijk ij k
T

corr y y
 


  . 

Under mixed models notation, we can write 

Y = Xβ + Zγ + ε  

where 

 Y is the (T  × 1) vector of the observed outcome data 

 X is a (T  × m) fixed effects design matrix 

 β is a (m × 1) vector of regression fixed effects coefficients  

 Z is a (T × q) random effects design matrix.     

 γ is the (q × 1) vector of random effects,  Nγ ~ 0,G  

 ε  is the error vector,    2~ , eN ε 0 I

Follow the properties of Multivariate Normal distribution, we have where ~ NY Xβ, W

   2T
e W ZGZ I       
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For any type of mixed model, the sample size and power estimates depend on the variances of 

the fixed effects, which can be found by 

 
1

1

1

N

i

Var






 
 
 T

i iβ X V X





      (4.1) 

where  is the corresponding design matrix to center iiX th and β  is the vector of regression 

coefficients for the fixed effects. 

Assuming the treatment effects are fixed and the model has no other covariates (m=2), 

then  0 ,
T β  where 0 is the expected measurement for a patient in the control group and 

0   is the expected measurement for patients in the intervention group. The hypothesis of 

interest can be written as 

: 0

: 0d




 

0

A

H

H
 

To test this hypothesis, a Wald-type test based on asymptotically normal distributions can 

be used. The asymptotic variance of  N    is determined by the right lower corner 

element of the estimated variance-covariance matrix   Var N    β β .  

The power to detect a difference of size  with a two-sided type I error rate of d   is: 

   , / 2, , / 2,1 t t

N N
power t d t d

Var Var
     

 

  
           
  

 





   

where ,tT   is the cumulative distribution function of the t-distribution with   degrees of freedom 

and / 2,t   is the 100 % percentile from the t-distribution with   degrees of freedom. The value 

of  depends on the analysis method and the level where randomization takes place. 
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In many sample size problems, computing the variance estimator  Var  is the main 

task. Once  Var  is obtained, we can easily plug its value into the above formula to estimate 

power or sample size. In three-level design, power depends on the sample size of all three levels, 

i.e. the values of N, p, and n. Although in the above formula n and p do not appear explicitly, 

their roles are embedded in the computation of  Var  . The following sections derive the 

formulas for Var   for different levels of randomization. 

 

4.2 Randomize at Third Level  

4.2.1 Estimate  Var β  

Assume that the centers are randomized such that  N centers are in the treatment arm 

and (1 )N centers are in the control arm. The number of patients allocated to the treatment arm 

is  T1= Npn, and the number of patients allocated to the control arm is T2=(1 )Npn. The 

design matrix is  if the ii treat pn pn X X 1 ,1

 0pn pn1 ,



pn

th center is randomized into the treatment group, 

and if the ii control X X th center is randomized into the control group.  

When randomization occurs at level three, the matrix can be written as: V

 2 2 2
p e n p n c     V I I J J  

For example, consider the ith center with two physicians and each physician has two patients. 

Then               

2 2 2 2 2

2 2 2 2 2

2 2 2 2

2 2 2 2 2

T c p c c

c p T c c

c c T c

c c c p T

    
    

2
p   

    

 
    
 

  

V


 



www.manaraa.com

 56
 

Factor out the total variance 2
T , we obtain , where 2

TV R

pn   1p n nr r         R I I J J    

For the example above,  

1

1

1

1

r

r

r

r

 
 

 
 

 
 
 
 
 
 

R  

The robust variance estimator of  N β β  is 


1

1

1

lim
N

N
i

N







    
 
 T

i iX V X  

        1
2 lim 1T treat treat control controlN

N N N  



     

T -1 T -1X R X X R X  

      1
2 1T treat treat control control  


     

T -1 T -1X R X X R X     

Following the derivation procedure presented by Shin (1997),  can be rewritten as 

  
1

2 1
T




 


  

    
  

T -11 R 1  


 

2 1

11
T

 
 

   
         

T -11 R 1
 

 Var   is the right lower corner element of the above variance-covariance matrix , which is 

      
2

1
TVar


 


 T -11 R 1
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The quantity   is proportional to the design effect (variance inflation factor). This is a 

scalar with the value equal to the sum of all elements in the matrix .The exact expression of 

will be derived next.  





1T -11 R 1

-1R

 1T -11 R 1

 

4.2.2 Derivation of  T -11 R 1

This derivation is based on the work from Teerenstra (2010). The two following results 

from Henderson and Searle (1981) will be used recurrently in this section: 

Result 1: 

If  and A B  are arbitrary nonsingular square matrices of same dimension, then 

     1 11 1 1 1 1 1 1A B A A B I A B A I A B I A B A
            

- -+ + 1  

Result 2: 

  1 1
q q q q

b
aI bJ I J

a a bq

  
    

 

Recall that correlation matrix for a given center iR th takes the form A B R , where 

        and     1p nA I r I r J      n pnB J  

Apply result 2 , we obtain 

 
 

1 1

1 1 1p n n

r
A I I

r n r





                  

J
n

 

Let  1 1n r n     , then  

1 1

1 p n n

r
A I I

r




              
J  
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   

1 1

1

1

p n n pn

pn

pn

r
A B I I J J

r

nr n J
r

J

 


  




                       

  




 

Again, apply result 2 we get 

   11
pn pnI A B I J

pn


 

  


 

Denote    1 1 1pn n r n p          , then 

  11
pn pnI A B I J




    

Substitute the , , and 1A 1A B   11I A B
 in  11 R A B

   using result 1 we have 

1 1

1 pn pn p n n

r
I J I I J

r

 
 

     
          

R



 

Thus, 

1 1

1
T T

pn pn p n n

r
I J I I J

r

 
 

     
   


        

1 R 1 1 1  

 1 1
1 1

1
T T

pn

n rpn
J

r


 

   
        

1 R 1 1 1  

 
 1 1

1 1
1

T n rpn p
pn

r

 n

  
   

         
1 R 1  

Hence, when randomization takes place and the third level, the design effect is given by  

   1 1 1n r n p      . 
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4.3 Randomize at Second Level without Interaction Effect  

4.3.1 Estimate  Var β  

Assume that for a center ith, the physicians are randomized such that  p physicians are in 

the treatment arm and (1 )p physicians are in the control arm. Thus, the number of patients 

allocated to the treatment arm is T1= Npn, and the number of patients allocated to the control 

arm is T2=(1 )Npn. Furthermore, assume that there is no interaction effect between treatment 

and center, i.e., any difference due to treatment is the same in every center. Under these 

assumptions, the correlation matrix remains the same form as described in 4.1.2: R

   1p n nr r         R I I J J pn  

The covariate matrix for a center iiX th is a pn 2 matrix. The first column of this matrix 

contains all ones, whereas the second column contains ones in the first  p  rows, and zero in the 

remaining (1-

n

 )p  rows.  For example, consider a simple experiment in which each center in th 

has four physicians, and each physician has two patients. Suppose the physicians in each center 

are randomized such that the first two physicians are in the treatment group and the last two are 

in the control group. For a given center ith , the matrix Xi takes the following form: 

1 1

1 1

1 1

1 1

1 0

1 0

1 0

1 0

i

 
 
 
 
 
   
 
 
 
 
  

X  

The robust variance estimator of  N β β  is 
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
1

1

1

lim
N

N
i

N







    
 
 T

i iX V X  

   12 1lim T
T i

N
N N i




    X R X  

 12 1T
T i i

    X R X    

 Var   is the right lower corner element of the above variance-covariance matrix . 

 

4.3.2 Derivation of  T
i i

-1X R X

Under the assumption of no interaction, the matrix 1R remain the same as derived in 4.1.2 

1 1

1 pn pn p n n

r
I J I I J

r

 
 

     
          

R



 

where  1 1n r n      and  

   1 1 1pn n r n p          . 

Expanding elements in the brackets, we have  

 1 1

1 p n n pn m n n

r r
I I J J I I J

r

  
  

             


         
R  

For simplification, let 
r

a





  and b


  

    1 1
1

1 p n n pnI I aJ b na J
r

     


R  

The matrix  is a 2 x 2 matrix with the following elements  T
i

-1X R Xi


T
i i

pn

pn pn pn



 

 
 
 
 
 
 
 

  
 

-1
-1 -1R R

X R X
-1 -1R R

all elements in  elements in first  columns of  

first  rows of elements in first  columns and first  rows of 
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Denote  as the sum of all elements in s 1R  and write  in terms of ,b , , and  s a n r

   2 2 2

2 2 3 2 2

1
1

1
1

1

s p n n a p n b na
r

pn pn a p n ab p n b
r

     

     

 

 

Denote t  as the sum of all elements that are in both first pn columns and first pn rows 

of .  1R

   2 2 2 2

2 2 3 2 2 2 2

1
1

1
1

t p n n a p n b na
r

p
1

n pn a p n ab p n b

 

   

     

     

 

Since is symmetric then 

r 

1R

T
i i

s s

s t




 
 
 -1X R X

 . 






Add and subtract 2 2 2pn a pn  to the inside of the brackets of t , 

   

    

2 2 2 2 2 2 2 2 3 2 2 2 2

2 2 2 3 2 2

1

1
1 1

1 1
1 1r r    

t pn pn a pn a pn pn pn a p n ab p n b
r

pn na pn pn a p n ab p n b

       

  

         
        



 

ote that the terms in the second bracket equal  of all elements in . Also, note that 

 

1RN s, the sum

1
1 1

nr n nr n r
na

  
  
   

      

Substituting this into  we get t

  21pn
t s

 





   

Thus 
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  21T
i i

s s

pn
s s


 

 


 
 
 
 
 
 
 
 

 


-1X R X

 
 

And 

   

  2
1

1

1
T
i i

pn
s s

spn
s s

 
 


 



 
 
 
 
 
 
 
 









-1X R X
-  

The robust variance estimator of  N β β  is 

 12 1T
T i i

    X R X  

The right lower corner element of the above variance-covariance matrix   is 

   
2

1
TVar

pn

 
 




 

Hence, when randomization takes place at the second level and assuming no interaction between 

center and treatment effects, the design effect is given by  1 1n r n     . 

 

4.4 Randomize at Second Level with Interaction Effect  

4.4.1 Estimate  Var β  

Assume that in each particular center ith, the physicians are randomized such that  p of 

them are in the treatment arm and (1 )p of them are in the control arm. Thus, the number of 

patients allocated to the treatment arm is T1= Npn, and the number of patients allocated to the 

control arm is T2=(1 )Npn. When the interaction between treatment and center exists, the 

robust variance estimator of N β β  can be obtained by computing  1T
i

1

i

    X V X . The 
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variance of the estimator  Var   is the right lower corner element of the above variance-

covariance matrix  .  

The distinction between randomization at second level with interaction and without 

interaction is that a new variance component representing the interaction between treatment and 

center is added to the model. The introduction of this interaction term changes the structure of 

the variance matrix V. 

 

4.4.2 The structure of  V

Denote this variance of the interaction as 2
ct , the total variance is now 

2 2
T c

2 2
p e

2
ct        

2
ct  allows for the impact of treatment on the outcome measurement to vary across centers. 

Under mixed model theory, the structure of V can be written as follows: 

 block  2
np cJ  , T

 

V U  , where: 

   2 2
e n p np cI I J J 

2
tp n      U 

 

  

   2 2
) (1 )e n p np ctJ J 

2
(1 p nI I    

     T  

To illustrate, suppose there are two centers, each center has three physicians and each physician 

has two patients. Furthermore, suppose randomization takes place at the physician level where 

the first two physicians are in treatment arm and the last physician is in control arm. For one 

center, the V  matrix is: 
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2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

T c

T c

T c

T c c

c c c c T

c c c c T

c

c

c

     
     
     
     
     
     

 
 
 
 

  
 
 
 
  

V  

where 2 2
c

2
ct     and 2 2 2

c p
2
ct      . 

There is no closed form for the right lower corner of the matrix 
11T

i i

  X V X

 Var

 . Thus, 

we will use the general formula specified in equation (4.1) to compute  . 

 

4.5 Randomize at First Level without Interaction Effect  

4.5.1 Estimate  Var β  

For a the jth physician in the ith center, suppose the patients are randomized such that  n 

patients are in the treatment arm and (1 )n patients are in the control arm. Thus, the total 

number of patients allocated to the treatment arm is T1= Npn, and the number of patients 

allocated to the control arm is T2=(1 )Npn. In addition, assume that there is no interaction 

effect, i.e., the treatment works the same in every center–physician pair. Under these 

assumptions, the correlation matrix remains the same form as described in 4.1.2: R

   1p n nr r         R I I J J pn  

The covariate matrix for the iiX th center is a pn×2 matrix. The first column of this matrix 

contains all ones, whereas the second column contains ones in the  pn rows corresponding to 

those patients allocated to the treatment group, and zero in the (1 )pn rows corresponding to 

those patients allocated to the control group.   
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For example, consider a simple case with two centers, each center has two physicians, 

and each physician has four patients: two patients are in the treatment group and two are in the 

control group. The  matrix for the iiX th center is as follows: 

1 1

1 1

1 0

1 0

1 1

1 1

1 0

1 0

i

 
 
 
 
 
   
 
 
 
 
  

X  

The robust variance estimator of  N β β  is 


1

1

1

lim
N

N
i

N







 
   

 
 T

i iX V X  

   12 1lim T
T i

N
N N i




    X R X  

 12 1T
T i i

    X R X    

 Var   is the right lower corner element of the above variance-covariance matrix .  

 

4.5.2 Derivation of  T
i i

-1X R X

Under the assumption of no interaction, the matrix 1R remain the same as derived in 4.1.2 

1 1

1 pn pn p n n

r
I J I I J

r

 
 

     
          

R



 

where  1 1n r n      and  
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   1 1 1pn n r n p          . 

Expanding elements in the brackets, we have  

 1 1

1 p n n pn m n n

r r
I I J J I I J

r

  
  

             


         
R  

For simplification, let 
r

a





  and b


  

    1 1
1

1 p n n pnI I aJ b na J
r

     


R  

The matrix  is a 2 x 2 matrix with the following elements  T
i

-1X R Xi

T
i i

 
 
 
 
  
 

  
 

-1
-1R

X R X
all elements in elements in treatment columns 

elements in treatment rows elements in both treatment columns and treatment rows

  

Let s  be the sum of all elements in 1R  and write s  in terms of a , , , and  b n r

   2 2 21
1

1
s p n n a p n b na

r
    

  

Let t  be the sum of all elements appear in both treatment columns and treatment rows 

   2 2 2 2 21
1

1
t p n n a p n b na

r
      

  

We then can write 

T
i i

s s

s t




 
 
 
 
 

-1X R X
  

Thus 

  1

2 2

1T
i i

t s

s sst s




   
 
 
 




-1X R X
 -  

The lower right element of the matrix 
12 1T

T i i
    X R X is  

2

2
TVar

t s







. Note that  
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        2 2 2 2 2 2 2 2 2 2 21
1 1

1
t s p n n a p n b na p n n a p n b na

r
               

 

  
 1

1

pn

r

 



 

Thus,     
 

2 1

1
T r

Var
np




 





 

Therefore, when randomization takes place at the first level without interaction effect, the design 

effect is 1 . r

 

 

4.6 Randomize at First Level with Interaction Effect 

4.6.1 Estimate  Var β  

For a the jth physician in the ith center, suppose the patients are randomized such that  n 

patients are in the treatment arm and (1 )n patients are in the control arm. Thus, the total 

number of patients allocated to the treatment arm is T1= Npn, and the number of patients 

allocated to the control arm is T2=(1 )Npn. The robust variance estimator of  N β β  can 

be obtained by computing  T
i

1

i
1   X V X . The variance of the estimator  Var   is the right 

lower corner element of the above variance-covariance matrix  .  

We consider two different scenarios where the interaction effects might be found: (1) 

interaction between treatment and level three and (2) interaction between treatment and level 

two. 
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4.6.2 The Structure of  with Treatment × Level Three Interaction V

The first scenario considers the situation where the treatment effect varies across different 

centers. Denote the variance of the interaction as 2
ct , the total variance is now given by: 

2 2 2 2
T c p e

2
ct         

Under mixed model theory, the structure of V can be written as follows: 

p p pI J I     V U T T  where  

          2 2 2 2 2
(1 ) (1 ),n e n ct n e n ct n c pblock I J I J J   

2     
         U    

      2 2
(1 ),n ct n ct n cblock J J J 

2   T  

To illustrate, consider the ith center with two physicians, each physician has four patients. 

Suppose the patients are randomized equally to the two treatment groups, the V matrix takes the 

following form:  

2 2

2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

T c

T c

T c c

T c c

c c T

c c T

c c T

c c T

2

2

c

c

       

       

       

       

       

       

       

       



 
 
 
 
 
 
 
 
 
 
 
 
 
  

V  

Where 2 2
c p

2     , 2 2
c

2
ct    , and  2 2 2

c p
2
ct      . 

 There is no closed form for the right lower corner of the matrix 
11T

i i

  X V X

 Var

 . Thus, 

we will use the general formula specified in equation (4.1) to compute  . 
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4.6.3 The Structure of with Treatment × Level Two Interaction V

The second scenario considers the situation where the treatment effect varies across different 

physicians. Denote the variance of the interaction as 2
pt , the total variance is now 

2 2 2 2
T c p e

2
pt         

Under mixed model theory, the structure of V can be written as follows: 

p p pI J I     V U T T  where  

         2 2 2 2 2
(1 ) (1 ),n e n pt n e n pt n c pblock I J I J J    2     

         U    

 2
n cJ T  

To illustrate the above structure, consider center ith with two physicians, each physician has four 

patients. Suppose the patients are randomized equally to the two treatment groups, the V matrix 

takes the following form:  

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2

2 2 2

2 2 2

T c c c c

T c c c c

T c c c c

T c c c c

c c c c T

c c c c T

c c c c T

c c c c T

       

       

       

       

       

       

       

       



 
 
 
 
 
 
 
 
 
 
 
 
  

V

2

2
p

  

where 2 2
c     and 2 2 2

c p
2
pt      .  

There is no closed form for the right lower corner of the matrix 
11T

i i

  X V X

 Var

 . Thus, 

we will use the general formula specified in equation (4.1) to compute  . 

 



www.manaraa.com

 70
 

Chapter 5 

Power and Sample Size for Binary Outcome 

 

 

In Chapter 4, we presented power and sample size formulas for three-level designs with 

continuous and normally distributed outcomes. In practice, however, it is very common to 

encounter experiments with correlated binary data. For example, consider a three-level design 

medical trial in which patients are selected within physicians, and physicians are selected within 

centers. Suppose the outcome is the presence or absence of a disease. The data from such study 

are binary and are correlated in a twofold nested fashion: measurements on patients are 

correlated within the same physicians, which in turn correlated within centers.  

Earlier, when working continuous Gaussian data, we derived the variance formulas for 

the estimated treatment effect based on linear mixed model theory. However, the vector of the 

expected means in binary outcome is typically not modeled as a linear function of the 

parameters. Thus, modification to the presented formulas for continuous data is required in order 

to answer the same power and sample size questions for binary data.  

Details of the modification will be provided in this chapter. First we will explain how 

generalize linear mixed models can be applied to derive the power and sample size functions for 

binary outcome. Next, we will show how the variance of the treatment difference will be 

computed in light of this approach. 
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5.1 Generalized Linear Mixed Models (GLMM) Approach 

5.1.1 Basic Model 

Consider a three-level CRT design in which patients are nested within physicians and physicians 

in turn are nested within centers. Denote the binary outcome variable from the ith center, jth 

physician, and kth patient as ijky . Let N be the total number of centers, p be the number of 

physicians in each center, and n be the number of patients visiting each physician (balanced 

design). The total sample size is T=Npn. 

The Generalized Linear Mixed Model is based on extending the fixed effect Generalized 

Linear Model by including the random effects. The model takes the following form: 

      1 1E g g   Y | γ Xβ Zγ η μ   

  g  μ Xβ Zγ   

where: 

 Y is the (T x 1) vector of the observed data 

 μ  is the vector of the expected means of Y 

 g(.) is a differentiable monotonic link function 

 X is a (T × m) fixed effects design matrix 

 β is a (m × 1) vector of regression coefficients for the fixed effects 

 Z is a (T × q) random effects design matrix.     

 γ is the (q×1) vector of random effects,  Nγ ~ 0,G  

 η  is the linear predictor, that is,  η Xβ Zγ . 
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Following GLMM theory, the variance of the observations conditional on the random 

effects can be written as: 

 Var Y | γ AB  

where  idiag aA  and     1
'' g

diag b 
 

  
 

η
B

η
  . (See Chapter 3 for more details.) 

The unconditional variance takes the form: 

      Var Var  V Y μ AB  

V is not easy to specify because in the binary case μ  is not a linear function of β . 

Solutions for GLMM depend on the form of the likelihood function. In many cases, it is 

difficult to maximize this function since it involves T integrals over the q dimensional random 

effects. Hence, techniques of numerical approximation are required to solve the problem.  

 

5.1.2 Pseudo-likelihood Method 

 In order to derive the general form of the variance matrix V, we consider the application 

of pseudo-likelihood, a linearization method that was tested and implemented in the SAS PROC 

GLIMMIX procedure. Pseudo-likelihood maximizes the quasi-likelihood by iteratively 

analyzing a linearized pseudo variable. The term “pseudo” is used because the likelihood 

function maximized is a function of a pseudo variable, not of the original data. Here, the pseudo 

variable is based on a first-order Taylor series expansion for  g Y  about μ , which yields: 

   
 

1

1

g 



  

   

z μ Y μ B

Xβ Zγ Y μ B
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This new model can be viewed as a linear mixed model with the new pseudo-observation 

z and the new random error term   1Y μ B . The variance of z can be formulated as (Brown 

and Prescott, 2006): 

 1 1T   zV ZGZ B AB B   

1T  zV ZGZ B A      

The variance of this linear mixed pseudo model will be used to derive the sample size and 

power formulas for binary outcomes. 

To specify  we need two pieces of information. The first piece  relates to the 

random effects in the model. As we will see in some explicit examples presented in the next 

sections, the components of consist of: (1) the between level two and within centers 

variance

zV TZGZ

TZGZ

2
p , (2) the between level three variance 2

c , and (3) the variance of the interaction terms 

when the interaction effect exists. The structure of  depends on which level randomization 

takes place. The process of deriving for the binary response is the same with that of the 

continuous response.  

TZGZ

TZGZ

The second piece  refers to the within physicians and between patients variance of 

the first level measures. Unlike the case of continuous outcomes, this variance is now a function 

of the binary proportion and is not independent from the mean. Letting 

1B A

 be the probability of 

“success” or the probability of observing a specific outcome and applying the logit link function, 

it can be seen from Section 5.1.1 that A is simply an identity matrix and is a diagonal matrix 

with elements of 

-1B

 
1

1 
. We will see explicit examples of this in the next few sections. 
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Getting back to the three-level study design where the observed outcomes from the ith 

center, jth physician, and kth patient are binary variables ijky , suppose the interest is to test the 

difference between the two treatment effects. Let the probability of an event in the treatment 

group be t and in the control group be c . The marginal distributions of  and the 

corresponding mean and variances are as follow 

ijky

 ~ijk ty Bernoulli  when ijky  is in the treatment group 

 
   

|

1

ijk ijk t

ijk t t

E y x

Var y



 



 
 

 ~ijk cy Bernoulli  when ijky is in the control group 

 
   

|

1

ijk ijk c

ijk c c

E y x

Var y



 



 
 

Assuming the treatment effects are fixed and the model has no other covariates, i.e. m=2 and 

 0 ,
T β . Under logit model we can write 

 
 

0

0

exp

1 expc








 

 
 

0

0

exp

1 expt

 


 



 

 

Thus, clog log
1 1

t

t c

 
 

  
      





, which is the log odds ratio of the corresponding response 

probabilities.  

The hypothesis of   

:

:
t c

t c

 
 




0

0

H

H
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is now equivalent to     

: 0

: 0

and

b




 

0

A

H

H
 

Once the structures of  and of  are defined, the sample size and power estimates 

depend on the variance estimates of the fixed effects, which can be found by 

iZV iX

 
1

1

1

N

i
i

Var






   
 
 T

i Z iβ X V X  

The asymptotic variance of  N    is determined by the right lower corner element 

of the estimated variance-covariance matrix    Var N    β β .  

The power to detect a difference of size  with a two-sided type I error rate of d  can be 

obtained by 

   , /2, , /2,1 t t

N N
power t d t d

Var Var
     

 

  
           
  

 





   

where ,tT   is the cumulative distribution function of the t-distribution with   degrees of freedom 

and / 2,t   is the 100 2 % percentile from the t-distribution with   degrees of freedom. The 

value of  depends on the analysis method and the level where randomization takes place. 

It can be seen from the above equation that the most important step to determine power is 

the computation of the term  Var  , which is the lower right hand corner of the estimated 

variance-covariance matrix . Since the structure of     Var N    β β depends on the study 

design, the next following sections are devoted to explain how to compute   in particular cases 
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for binary outcomes depending on which level random assignment is performed and whether or 

not an interaction is taken into account. 

 

5.2 Randomize at Third Level  

Assume that the total N centers are randomized such that  N centers are in the treatment 

arm and (1 )N centers are in the control arm. Thus, the number of patients allocated to the 

treatment arm is T1= Npn, and the number of patients allocated to the control arm is 

T2=(1 )Npn. Furthermore, let the probability of an event in the treatment group be t and in 

the control group be c .  

Since randomization occurs at the center level, the covariate matrix and the variance 

of the pseudo variable  depend on to which treatment group a particular center is allocated. 

Denote the covariate matrix   and the variance matrix of the pseudo variable for the i

iX

ZiV

iX ZiV th 

center. The robust variance estimator of  N β β  is 


1

1

1

lim
N

iN
i

N







 
   

 
 T

i Z iX V X  

        1
1 1lim 1t t t c c cN

N N N 


 


     

T T
Z ZX V X X V X  

      1
1 11t t t c c c 


      

T T
Z ZX V X X V X  

If the ith center is randomized into the treatment group, we have 

 i t pn pn X X 1 ,1  

 
2 21

1Zi Zt p n p n c
t t

 
 

 
       

V V I I J J pn    
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If the ith center is randomized into the control group, we have 

 0i c pn pn X X 1 ,   

 
2 21

1Zi Zc p n p n c
c c

 
 

 
       

V V I I J J pn   

To illustrate, consider a simple experiment with two centers, each center has two 

physicians, and each physician has two patients. Suppose that the first center is randomized into 

the treatment group and the second center is randomized into the control group. Furthermore, 

denote the total variance for each treatment group as and  , then 2
treat 2

control

  
 

2 2 2 1

1treat c p
t t

  
 

  


 

 
2 2 2 1

1control c p
c c

  
 

  


 

The structure of  and for the first center (treatment) are iX iZV

1 1

1 1

1 1

1 1

t

 
 

 
 
 

X 
2
p

t

     and 

2 2 2 2 2

2 2 2 2 2

2 2 2 2

2 2 2 2 2

treat c p c c

c p treat c c
Zt

c c treat c

c c c p trea

V

    
    
    
    

 
    
 

  

 

The structure of  and for the second center (control) are iX iZV

1 0

1 0

1 0

1 0

t

 
 

 
 
 

X 
2
p

ol

     and 

2 2 2 2 2

2 2 2 2 2

2 2 2 2

2 2 2 2 2

control c p c c

c p control c c
Zc

c c control c

c c c p contr

V

    
    
    
    

 
    
 

  

 

The variance of the estimated treatment effect  Var   is the right lower corner element of the 

variance-covariance matrix        1
1 1

t t c c c1t 


     
T T

Z ZX V X X V X   
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5.3 Randomize at Second Level without Interaction Effect 

Assume that for the ith center, the physicians are randomized such that  p of them are in 

the treatment arm and (1 )p of them are in the control arm. Thus, the number of patients 

allocated to the treatment arm is T1= Npn, and the number of patients allocated to the control 

arm is T2=(1 )Npn. Furthermore, let the binary proportion for the treatment group be t and 

for the control group be c and assume that there is no interaction effect between treatment and 

center, i.e., the treatment works the same in every center. 

Since randomization takes place at the second level, all ’s are the same and all ’s 

are the same across the N centers. Thus 

iX ZiV

  
1

11 1

1

lim
N

i iN
i

N


 




    
 
 T T

i Z i i Z iX V X X V X  

In this study design, the covariate matrix for the iiX th center is a pn x2 matrix. The first 

column of this matrix contains all ones, whereas the second column contains ones in the first 

 pn rows, and zero in the remaining (1 )pn rows. The structure of can be written as ZiV

   2, np cblock J  ZiV A B , where 

   21

1p n
t t

I I J 
 

 
     

A n p  

     2
1

1

1 n n pp
c c

I I 
 

 
     

B J  

For example, consider a simple experiment in which the ith center has two physicians, and 

each physician has two patients. Suppose the first physician in the center is randomized into the 



www.manaraa.com

 79
 

treatment group and the second physician is randomized into the control group. The structures of  

Xi  and for  this particular center iZiV th take the following form 

1 1

1 1

1 0

1 0

i

 
 

 
 
 

X 
2
p

    and  

2 2 2 2 2

2 2 2 2 2

2 2 2 2
co

2 2 2 2 2

treat c p c c

c p treat c c

c c ntrol c

c c c p control

    
    
    
    

 
    
 

  

ZiV  

where   
 

2 2 2 1

1treat c p
t t

  
 

  


 and  

 
2 2 2 1

1control c p
c c

  
 

  


 

 

5.4 Randomize at Second Level with Interaction Effect 

The distinction between randomization at second level with interaction and without 

interaction is that a new variance term representing the interaction between treatment and center 

need to be added to the model. Although the covariate matrix  defined in Section 5.2 remains 

to be the same, the existence of the interaction term cause some changes in the structure of the 

variance matrix . Denote the variance of the interaction as 

iX

2
ctZiV  , now takes the following 

form 

ZiV

   2, np cblock J  ZiV A B  , where 

    2 21

1p n n p
t t

I I J J  pn ct 
 

 
      

A  

         2 2
1 1

1

1 n n p ctp n
c c

I I J J p 
  

 
      

B  
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For example, consider a simple experiment in which the ith center has four physicians, 

and each physician has two patients. Suppose the first two physicians in the center are 

randomized into the treatment group and the next two physicians are randomized into the control 

group. Furthermore, suppose that the treatment effect varies across different centers, then for the 

ith center, we  can write  

1 1

1 1

1 1

1 1

1 0

1 0

1 0

1 0

i

 
 
 
 
 
   
 
 
 
 
  

X

and can be written as ZiV

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2

treat c c c c

treat c c c c

treat c c c c

treat c c c c
Zi

c c c c control

c c c c control

c c c c control

c c c c

       
       
       
       
       
       
       
     

V

2 2 2
control 

 
 
 
 
 
 
 
 
 
 
 
  

 

Where 

 
2 2 2 2 1

1treat c p ct
t t

   
 

   


  

 
2 2 2 2 1

1control c p ct
c c

   
 

   


 

2 2
c c

2
t     

2 2 2
c p

2
ct       
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5.5 Randomize at First Level without Interaction Effect 

Assume that there is no interaction effect, i.e., the treatment works the same in every 

center and every physician. For a the jth physician in the ith center, suppose the patients are 

randomized such that  n patients are in the treatment arm and (1 )n patients are in the control 

arm. Thus, the total number of patients allocated to the treatment arm is T1= Npn, and the 

number of patients allocated to the control arm is T2=(1 )Npn. Furthermore, let the probability 

of an event in the treatment group be t and in the control group be c . Since randomization 

takes place at the first level,  and are the same across all centers. Thus iX ZiV

  
1

11 1

1

lim
N

i i
N

i

N


 




 
   

 
 T T

i Z i i Z iX V X X V X  

The covariate matrix for the iiX th center is a pn x2 matrix. The first column of this matrix 

contains all ones, whereas the second column contains ones in the  pn rows corresponding to 

those patients allocated to the treatment group, and zero in the (1 )pn rows corresponding to 

those patients allocated to the control group.   

The structure of can be written as ZiV

   2 2,p n c p pblock           ZiV I A B J J C I p C , where 

 
1

1 n
t t

 
 

    
A I  

   1

1

1 n
c c

  

 
    

B I  

 2
n cC J  



www.manaraa.com

 82
 

For example, suppose the ith center has two physicians and each physician has four 

patients. Suppose the first two patients are randomized into the treatment group and the next two 

patients are randomized into the control group. Then, for the ith center, we have 

1 1

1 1

1 0

1 0

1 1

1 1

1 0

1 0

i

 
 
 
 
 
   
 
 
 
 
  

X  

And the structure of is ZiV

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2

treat c c c c

treat c c c c

control c c c c

control c c c c
Zi

c c c c treat

c c c c treat

c c c c control

c c c c

       
       
       
       
       
       
       
     

V

2 2 2
control 

 
 
 
 
 
 
 
 
 
 
 
  

 

Where  

 
2 2 2 1

1treat c p
t t

  
 

  


 

 
2 2 2 1

1control c p
c c

  
 

  


 

2 2
c p

2     
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5.6 Randomize at First Level with Interaction Effect 

We consider two different scenarios where the interaction effects might be found: (1) 

interaction between treatment and level three and (2) interaction between treatment and level 

two. 

 

5.6.1 The Structure of  with Treatment × Level Three Interaction ziV

Under the same randomization scheme, what if the treatment effect varies across 

different centers? In this situation, an interaction effect between treatment and center should be 

taken into account. 

Since the presence of the interaction effect does not lead to any change on covariate 

matrix , the difference in the computation of iX   relies solely on the modification in the 

structure of . This modification can be done by introducing a new variance term denoted by ZiV

2
ct . V now takes the following structure: Zi

   2 2,p n c p pblock           ZiV I A B J J C I p C  

   21

1 n n ct
t t

  
 

 
    

A I J  

       2
1 1

1

1 ctn n
c c

  
   

 
    

B I J  

        2 2
1,n ct ct n cnblock  

2   C J J J  

For a simple example with two centers, each center has two physicians, and each 

physician has four patients: two are in the treatment group and two are in the control group. We 

then have: 
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1 1

1 1

1 0

1 0

1 1

1 1

1 0

1 0

i

 
 
 
 
 
 
 
 
 
 
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X 
  and 

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

treat c c

treat c c

control c c

control c c
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       
       
       
       
       
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
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Where  
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2 2
c c

2
t     

2 2 2
c p

2
ct       

 

5.6.2 The Structure of  with Treatment × Level Two Interaction ziV

Now, let us consider another scenario when the treatment effect varies across different 

physicians. In this scenario, an interaction effect between treatment and physician is required. 

Again, the presence of the interaction effect does not lead to any change on covariate 

matrix  and the difference in the computation of iX   only depends on the modification in the 

structure of . This modification is done by the introduction of the variance of the interaction 

term reflecting the interaction between physician and treatment 

ZiV

2
pt . now takes the following 

structure: 

ZiV
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   2 2,p n c p pblock           ZiV I A B J J C I p C  

   21

1 n n p
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 

 
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A I J  
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  
   

 
    

B I J  

 2
n cC J  

For a simple example with two centers, each center has two physicians, and each 

physician has four patients: two are in the treatment group and two are in the control group. We 

then have  
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Chapter 6 

Simulation Study 

 

 

As presented in Chapters 4 and 5, our power and sample size calculations are based on 

asymptotic theory, particularly the derivation of the variance of the treatment effect. It is 

reasonable to suspect that a minor variation in the approach proposed for the intervention 

evaluation can cause substantial difference in power and sample size estimates. To assess the 

accuracy of our methods, we conducted a simulation study designed to verify sample size and 

power calculations. The results showed that the theoretical power estimates from our formulas 

are consistent to the empirical power computed from the simulated data. 

This chapter explains the process that was used to generate the data for the different 

designs presented in Chapter 4 and Chapter 5. The simulation results will be then presented and 

discussed. 

 

6.1 Simulation Design 

We simulated data for cluster randomized trials with three-level design under the 

assumption of balanced sample sizes, i.e. the numbers of subjects per each cluster are equal 

across all clusters. For example, if the trial includes patient nested within physician and 

physician nested within center, then the numbers of patients for each physician are the same and 

the numbers of physicians for each center are the same across all centers. In all the settings, we 

assumed a completely randomized design that involved two arms: a treatment arm and a control 

arm. We considered six different scenarios for each type of outcomes: continuous and binary. 
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The six scenarios are dictated by which level the allocation of treatment takes place and whether 

there is an interaction effect or not. They include (1) randomize at level three, (2) randomize at 

level two without interaction, (3) randomize at level two with interaction, (4) randomize at level 

one without interaction, (5) randomize at level one with interaction between treatment and level 

three, and (6) randomize at level one with interaction between treatment and level two. 

To verify the accuracy of the derived power and sample size functions, we compared the 

theoretical power given by our proposed formulas (denote by ) to the empirical power given 

by the simulated data (denote by ) . The theoretical power was computed using SAS PROC 

IML, which specifies the forms of the variance matrices and yields the power based on our 

theory. The empirical power was obtained by fitting the simulated data sets with linear mixed 

models using SAS PROC MIXED for continuous outcome, and generalized linear mixed models 

using SAS PROC GLIMMIX for binary outcome. The p-values for testing the null hypothesis of 

no treatment effect were retained after each the model fitting process. Denote the p-value by 





rp for the rth repetition of the simulated data with a total of R repetitions, the empirical power 

can be calculated by 


 

R

r
r

p

R





  

For comparison, we estimated the 95% confidence intervals for the empirical power and 

recorded the number of iterations where the confidence interval covered the theoretical power. In 

addition, the absolute difference between the two values of powers was also computed in order to 

assess the discrepancy between the theoretical power and the empirical power.  The simulation 

methods are slightly different between the continuous outcome and the binary outcome. We will 

discuss the simulation processes for the two types of outcomes separately. 
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6.2 Simulation for Continuous Data 

For continuous outcomes, the following parameters were pre-specified: 

 The desired theoretical power   

 The two-sided significance level   

 The proportion of allocation into treatment   

 The variances between level three 2
c , the variance between level two 2

p , and the 

variance between level one 2
e . 

 The variances of the interaction effect between treatment and level three 2
ct  or between 

treatment and level two 2
pt  (if the interaction at these levels exist). 

The following parameters were allowed to vary 

 The intervention effect trt  and control effect ctrl  

 The sample sizes in each level c, p, and n 

 

Our simulation programs were designed in such a way that the results can be collected 

for any chosen combination of the above parameters. In this report, we chose to fix the desired 

power  and 0.75 0.05  . However, these two parameters can be set at different values. 

To chose the values for the ICC, we looked at  recent publications on sample size 

estimation for three-level designs in healthcare experiments. Our review suggested that the 

intraclass correlation on level three (  ) is much smaller than that of level two ( ). For example, 

in a recent study conducted by Heo and Leon (2009), the researchers examined a combination of 

r

0.01, 0.05, 0.10   and . Taking the first combination of 0.4, 0.6r  0.5,  and , together r
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with a total variance of , our pre-specified variance parameters were , 

, , , .  

2 1T 

0.05

2 0.01c 

2 0.39p  2 0.60e  2
ct  2 0.02pt 

The differences between intervention and control effects were derived from the 

corresponding sample sizes and the desired power of 0.75 from our theoretical formulas. Since 

the power is set at a fixed value and the variances are also set at the pre-specified values, the 

difference in treatment effect is a function of the variances and the selected power. 

The sample sizes in each level were varied amongst large, medium, and small sizes. 

These sample sizes again were chosen based on common sample sizes reported from the 

literature of CRT. More specifically, we considered the following: 

 

 Sample sizes for level three c=10 , 20, 30  

 Sample sizes for level two: p=4, 8, 12 

 Sample sizes for level one n=10, 20, 30 

 

This 3×3×3 factorial design yielded a total of 27 combinations for each set of parameters. 

In order to allow for a workable compromise between the magin of error and the number of 

repetitions, we chose a margin of error of 0.035. With this, we arrived at a total number of 

repetitions of 784 data sets for each combination. Thus, altogether we had 21,168 sets of data 

across the six different scenarios with continuous outcomes.  

For each different scenario, we performed different steps to simulate the corresponding 

data sets. Details of the steps as well as the simulation algorithms will be described in the next 

paragraphs. 
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Case 1: Randomization at Level Three—Continuous Outcome 

 Generate 2
c~ ,i trtX N    independently, where i=1,2,…, c for the treatment  

 Generate 2
c~ ,i ctrlX N    independently, where i= 1c  , 2,c  .., c for the control 

 For each iX , generate  2
pY N X~ ,j i   independently, where j=1,2,…, p 

 For each jY , generate  2
e~ ,k jZ N Y   independently, where k=1,2,…,n 

 

The simulation algorithm for case 1 is illustrated in Figure 6.2.1  

 

Figure 6.2.1: Simulation Algorithm 

Randomize at Level Three—Continuous Outcome 

 

 

 2~ ,ctrl ctrl cX N  

 
 2~ ,trt trt cX N    

Level 2 

Level 1 

 2~ ,ctrl ctrl pY N X   

 2~ ,ctrl ctrl eZ N Y 

 2~ ,trt trt pY N X   

Level 3 
ControlTreat 

 2~ ,trt trt eZ N Y    
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Case 2: Randomize at  Level Two without Interaction—Continuous Outcome 

 Generate  2~ 0,i cX N   

 For each iX , generate  2~j i trtX , pY N    independently, where j=1,2,…, p  for the 

treatment group and generate  2,ctrl pY N~j iX    independently,  where j= 1 p  , 

2,p  …, p in the control group 

 For each jY , generate  2
e~ ,k jZ N Y   independently,  where k=1,2,…,n 

 

The simulation algorithm for the case 2 is described in Figure 6.2.2 

 

Figure 6.2.2: Simulation Algorithm  

Randomize at Level Two without Interaction –Continuous Outcome 

 

Level 3 

 2~ 0, cX N 

Treat 

Level 2 

Level 1 

 

Control

 2~ ,ctrl ctrl pY N X  

 2~ ,ctrl ctrl eZ N Y 

 2~ ,trt trt pY N X  

 2~ ,trt trt eZ N Y   
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Case 3: Randomization at Level Two with Interaction—Continuous Outcome 

 Generate  2
c~ 0,iX N   independently 

 Generate the treatment effects  2~ ,T trtN ct   for the treatment group and 

2
ct~ ,C ctrlN    for the control group.  

 For each iX , generate  2~j i TX , pY N    independently , where j=1,2,…, p  for the 

treatment group and generate  2,C pY N~j iX    independently, where j= 1 p  , 

2,p  …, p for the control group 

 For each jY , generate  2~ ,k jZ N Y e  independently,  where k=1,2,…,n 

The simulation algorithm for the case 3 is described in Figure 6.2.3 

 

Figure 6.2.3: Simulation Algorithm  

Randomize at Level Two with Interaction –Continuous Outcome 

 

 

Level 3 

 2~ 0, cX N 

Level 2 

Level 1 

Treat Control 

 2~ ,ctrl T pY N X    

 2~ ,ctrl ctrl eZ N Y   

 2~ ,trt T pY N X    

 2~ ,trt trt eZ N Y   

 2~ ,T trtN

Interaction Interaction

 2~ ,C ctrlNct    ct    
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Case 4: Randomize at Level One without Interaction—Continuous Outcome 

 Generate  2~ 0,i cX N   

 For each iX , generate  2
pY N X~ ,j i   independently, where j=1,2,…,p 

 For each jY , generate  2~k j trtZ N Y , e   independently, where k=1,2,…, n  for the 

treatment group and generate  2~ ,ctrlk jZ N Y e   independently, where k= 1n  , 

2,n  …, n in the control group 

 

The simulation algorithm for the case 4 is described in Figure 6.2.4 

 

Figure 6.2.4: Simulation Algorithm  

Randomize at Level One without Interaction –Continuous Outcome 

 

Level 3 

 2~ 0, cX N   

Level 2 

 2~ , pY N X 

Treat 
Level 1 

 

Control 2~ ,trt trt eZ N Y     2~ ,ctrl ctrl eZ N Y    
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Case 5: Randomize at Level One with  Treatment ×Level Three—Continuous Outcome 

 Generate  2
c~ 0,iX N   independently 

 Generate the treatment effects  2~ ,T trtN ct   for the treatment group and 

2
ct~ ,C ctrlN    for the control group.  

 For each iX , generate  2
pY N X~ ,j i   independently, where j=1,2,…,p 

 For each jY , generate  2~ ,k j TZ N Y e   independently,  where k=1,2,…, n  for the 

treatment group and  2~ ,k j C eZ N Y    independently, where k= 1n  , 2,n  …, n 

in the control group 

The simulation algorithm for the case 5 is described in Figure 6.2.5 

 

Figure 6.2.5: Simulation Algorithm  

Randomize at Level One with Treatment × Level Three –Continuous Outcome 

 

Level 3 
 2~ ,T trtN  2~ ,C ctrlN 2~ 0, cX N 

 

Level 2 
 2~ , pY N X 

Level 1 
Treat Control  2~ ,ctrl C eZ N Y  

 
 2~ ,trt T eZ N Y    

ct    ct  

Interaction Interaction
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Case 6: Randomize at Level One with Treatment ×Level Two—Continuous Outcome 

 Generate  2
c~ 0,iX N   independently 

 For each iX , generate  2
pY N X~ ,j i   independently, where j=1,2,…,p 

 Generate the treatment effects  2~ ,T trtN pt   for the treatment group and 

2
pt~ ,C ctrlN    for the control group.  

 For each jY , generate  2~ ,k j TZ N Y e   independently, where k=1,2,…, n  for the 

treatment group and generate  2, e~Z Nk j CY   independently, where k= 1n  , 

2,n  …, n in the control group 

The simulation algorithm for the case 6 is described in Figure 6.2.6 

 

Figure 6.2.6: Simulation Algorithm  

Randomize at Level One with Treatment × Level Two –Continuous Outcome 

Level 3 

 2~ 0, cX N 

Level 2 
 2~ ,T trtN  2~ ,C ctrlN 2~ , pY N X pt    pt  

 

 

Treat Control 

 2~ ,trt T eZ N Y    2~ ,ctrl C eZ N Y  Level 1   

 

Interaction Interaction
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6.3 Simulation for Binary Data 

Similar to the continuous cases, the following parameters were pre-specified for binary data: 

 The desired theoretical power   

 The two-sided significance level   

 The proportion of allocation into treatment   

 The variances between level three 2
c , the variance between level two 2

p  

 The variances of the interaction effect between treatment and level three 2
ct  or between 

treatment and level two 2
pt  (if the interaction at these levels exist). 

The following parameters were allowed to vary 

 The probability of an event t in the treatment group and c in the control group 

 The sample sizes in each level c, p, and n 

Again, we chose to fix the desired power 0.75  and 0.05  . The pre-specified 

variance parameters were , , , . Setting the probability 

of the event in the control group as 

2 0.01c  2 0.39p 

0.7c

2 0.05ct   2
pt  0.02

  , the differences between intervention and control 

probabilities were computed from the corresponding sample sizes and the desired power of 0.75 

given by the theoretical formulas. The sample sizes in each level were varied amongst large, 

medium, and small sizes. We considered c=10, 20, 30 ; p=4, 8, 12; and n=10, 20, 30, which 

yielded a total of 27 combinations for each set of parameters. For a margin of error of 0.035, we 

arrived at a total number of repetitions of 784 data sets for each combination. Thus, altogether 

we had 21,168 sets of data for across the six different scenarios with binary outcome.  

Following the general linear mixed models approach, we assumed the random effects in 

level three and level two are normally (Gaussian) distributed. To generate binary data, we 
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followed a model that linearly relates level one to the higher level cluster effects by way of the 

logit of the probabilities. Details for the six cases are described below. 

 

Case 7: Randomize at Level Three—Binary Outcome 

 Generate 2
c~ ,i trtX N    independently, where i=1,2,…, c for the treatment group 

and  2~ ,i ctrl cX N    independently, where i= 1c  , 2,c  …, c for the control group 

 For each iX , generate  2
pY N X~ ,j i   independently,  where j=1,2,…, p 

 For each jY , compute    and generate  j1/ 1 jY

jp e  ~kZ Bernoulli p  independently,  

where k=1,2,…,n 

The simulation algorithm for case 7 is illustrated in Figure 6.3.1  

 

Figure 6.3.1: Simulation Algorithm 

Randomize at Level Three—Binary Outcome 

 2~ ,ctrl ctrl cX N     2~ ,trt trt cX N    Level 3 

Level 2 

Level 1 

 2~ ,ctrl ctrl pY N X   
 2~ ,trt trt pY N X   

 
 

1/ 1

~

trtY
trt

trt trt

p e

Z Bernoulli p

 
 

 
 

1/ 1

~

ctrlY
ctrl

ctrl ctrl

p e

Z Bernoulli p

 
 

ControlTreat 
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Case 8: Randomize at Level Two without Interaction—Binary Outcome 

 Generate  2
c~ 0,iX N   independently 

 For each iX , generate  2~j i trtX , pY N    independently, where j=1,2,…, p  for the 

treatment group and generate  2,ctrl pY N~j iX    independently, where j= 1 p  , 

2,p  …, p in the control group 

 For each jY , compute    and generate  j1/ 1 jY

jp e  ~kZ Bernoulli p  independently, 

where  k=1,2,…,n 

The simulation algorithm for case 8 is described in Figure 6.3.2 

 

Figure 6.3.2: Simulation Algorithm  

Randomize at Level 2 without Interaction –Binary Outcome 

 

Level 3 

 2~ 0, cX N 

Treat 

Level 2 

Level 1 

 

Control

 2~ ,ctrl ctrl pY N X   2~ ,trt trt pY N X  

 
 

1/ 1

~

trtY
trt

trt trt

p e

Z Bernoulli p

 
 

 
 

1/ 1

~

ctrlY
ctrl

ctrl ctrl

p e

Z Bernoulli p

 
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Case 9: Randomiz evel Two with Interactioe at L n—Binary Outcome 

 Generate  ~ 0,i cX N 2  independentl

the treatment effects 

y 

 Generate  2
trtN~ ,T ct   for the treatment group and 

 2~ ,C ctrl ctN    for th oup.  

 For each i

e control gr

X , generate  2
i T~jY N X , p   independently,  where j=1,2,…, p  for the 

treatment group and generate  2~ ,i CjY pN X    independently,  where j= 1p  , 

2,p  …, p for the co oup 

 For each jY , compute 

ntrol gr

 1/ 1 jY

jp e   and generate  ~k jZ Bernoulli p  independently, 

he simulation algorithm for the case 9 is described in Figure 6.3.3 

Randomize at Level 2 w ction –Binary Outcome

 

where k=1,2,…,n 

T

 

Figure 6.3.3: Simulation Algorithm  

ith Intera  

Level 3 

 2~ 0, cX N 

Level 2 

Level 1 

Treat Control 

 2~ ,ctrl pY N X   

 
 

1/ 1

~

ctrlY
ctrl

ctrl ctrl

p e

Z Bernoulli p

 

 2~ ,trt pY N X    

 
 

1/ 1

~

trtY
trt

trt trt

p e

Z Bernoulli p

 

 2~ ,trt ctN  

Interaction Interaction

 2~ ,ctrl ctN    
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Case 10: Random Level One without Interaize at ction—Binary Outcome 

 Generate  ~ 0,i cX N 2  independently 

 pY N 2~ ,j X  For each iX , generate  independently,  where j=1 2,…,p,  

, compute  1/ 1 j trt

trtp e   and Y   For each Yj  1/ 1 j ctrl

ctrlp e   

 Generate ~trt

Y  

 trtZ Bern ndependently, where k=1,2,…, noulli p  i   for the treatment 

group and generate  ctrl~trtZ Bernoulli p  independently, where k= n 1  , 2,n  …, n 

he simulation algorithm for case 10 is described in Figure 6.3.4 

andomize at Level 1 without Interaction –Binary Outcome 

 

 

in the control group. 

T

 

Figure 6.3.4: Simulation Algorithm  

R

Level 3 

 2~ 0, cX N   

Level 2 

 2~ , cY N X 

Treat Control

Level 1  
 

1/ 1

~

trtY
trt

trt trt

p e

Z Bernoulli p

  
 

 
 

1/ 1

~

ctrlY
ctrl

ctrl ctrl

p e

Z Bernoulli p

  
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Case 11: Random Level One with Treatmenize at t ×Level Three—Binary Outcome 

 Generate  ~ 0,i cX N 2  independentl

the treatment effects 

y 

 Generate  2
trtN~ ,T ct   for the treatment group and 

 2~ ,C ctrl ctN    for the control group.  

 p
2~ ,jY N X For each iX , generate   independently, where j=1,2,…,p 

, compute  1/ 1 j T

trtp e   and Y   For each Yj  1/ 1 j C

ctrlp e   

 Generate  trt

Y  

~trtZ Bernoulli p  independently,  where k=1,2,…, n  for the treatment 

group and trt  ~ ctrlZ Bernoulli p  independently,  where k= 1n  , 2,n  …, n in the 

he simulation algorithm for case 11 is described in Figure 6.3.5 

andomize at Level One with Treatment × Level Three –Binary Outcome 

 

 

control group 

T

 

Figure 6.3.5: Simulation Algorithm  

R

Level 3 
 2~ ,T trtN ct    2~ ,C ctrlN ct   2~ 0, cX N 

Level 2 
 2~ , pY N X 

Level 1 

Treat Control  


1/ 1

~

CY
ctrl

ctrl ctrl

p e

Z Bernoulli p

  

 

 
 

1/ 1

~

TY
trt

trt trt

p e

Z Bernoulli p

  
 

Interaction Interaction 
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Case 12: Randomize at Level One with Treatment ×Level Two—Binary Outcome 

 folloWe performed the wing: 

 Generate  ~ 0,i cX N 2  independently 

 For each iX , generate  ~ ,j pY N X 2  ently,  where j=1,2,…,p 

the treatment effects 

independ

 Generate  2,trtN~T pt   for the treatment group and 

 2~ ,C ctrl ptN    for t group.  he control 

, compute  1/ 1 j T

trtp e   and Y   For each Yj  1/ 1 j C

ctrlp e   

 Generate  trt

Y  

~trtZ Bernoulli p  independently, where k=1,2,…, n  for the treatment 

group and trt  ~ ctrlZ Bernoulli p  independently,  where k= 1n  , 2,n  …, n in the 

described in Figure 6.3.6 

andomize at Level One with Treatment × Level Two –Binary Outcome 

 

 

control group 

The simulation algorithm for case 12 is 

Figure 6.3.6: Simulation Algorithm  

R
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 

 
1/ 1
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CY
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ctrl ctrl
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  
 

 
 

1/ 1

~

TY
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trt trt

p e
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  
 

 2~ ,T trtN pt    
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6.4 Sim

d by the simulation experiment. To answer this question, we examine the following 

6.4.1 S

 the 

empirical powers where results are combined for the six scenarios for continuous outcome.  

.4.1: Su f tio  us O

Design 
os 

evel 3 

 

Level 
2 

evel 2 with 
Interacti
 

Level 1 el 1 with 
Treat × L
3   

Level 1 with 
Treat× Lev

ulation Results 

The main question addressed by the simulation study was that given a set of parameters, 

how well does the power from the derived sample size formulas agree with the empirical power 

generate

results. 

imulation Results for Continuous Outcome  

Table 6.4.1 shows the mean, minimum, maximum, and the standard errors of

 

Table 6 mmary o Simula n Results for Continuo utcome 

scenari
L L

on 
Lev

evel el 2 

Mean 0.75 0.75 0.72 0.75 0.73 0.73

Min 0.67 0.70 0.65 0.67 0.68 0.69

Max 

SE 0.0065 0.0051 0.0061 0.0055 0.0042 0.0039

0.85 0.79 0.77 0.82 0.76 0.77

 

Tables B.1 to B.6 in Appendix B present in more detail the specified sample sizes for the 

three levels, the empirical power  , and the absolute differences between the empirical powers 

and the theoretical powers for the continuous case. These tables show that in most of the cases 

the values of theoretical power are consistent with those of the empirical power regardless of the 

sample 

underestimated, most would consider the difference negligible. The rational for this is that Proc 

size combination.  

It is noticed that in the cases with interaction, although the empirical powers were 
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MIXED tends to overestimate the interaction variance components, which in turn lowers the 

power because the estimated variance of the difference is larger.  

Overall, the results for continuous data showed that the empirical powers varied around 

the theoretical powers at all sample sizes combination. In all combinations of the sample sizes 

considered, the theoretical the powers were covered by the 95% confidence intervals of the 

empirical powers in 93.8% (152/162) of the cases. This result is consistent for cases with and 

without interaction. The absolute differences between the empirical powers and the theoretical 

power were fairly small, with an average of 0.025 (SE=0.0284). Thus, the results for continuous 

data indicate that the power based on our derived formulas is nearly identical to the empirical 

power based on the simulated data. 

 

6.4.2 Simulation Results for Binary Outcome 

Table 6.4.2 displays the mean, the minimum, and the maximum, and the standard errors 

of the empirical powers for all the six different scenarios for binary outcome. 

 

Table 6.4.2: Summary of Simulation Results for Binary Outcome 

Design 

scenarios 

Level 3 

 

Level 2 Level 2 with  

Interaction  

Level 

1 

Level 1 with 

Treat × Level 

3   

Level 1 with 

Treat× Level 2 

Mean 0.75 0.74 0.73 0.76 0.73 0.73

Min 0.70 0.66 0.65 0.68 0.66 0.70

Max 0.84 0.85 0.78 0.80 0.77 0.77

SE 0.066 0.0074 0.0056 0.0053 0.0052 0.0043
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Tables B.7 to B.12 in Appendix B present in more detail the specified sample sizes for 

the three levels, the empirical power , and the absolute differences between the empirical 

powers and the theoretical powers for the binary case.  

Similar to the continuous case, the empirical powers were lower than the theoretical 

powers in the cases with interaction. This is due to the overestimate of the interaction variance 

components caused by PROC GLIMMIX.  

Overall, the results for binary data showed that the empirical powers are consistent with 

the theoretical powers at all sample sizes combination. In combination of the sample sizes 

considered, the theoretical powers remain within the 95% confidence intervals of the empirical 

powers in 87.0% (141/162) of the cases. The absolute differences between the empirical powers 

and the theoretical powers were fairly small, with an average of 0.025 (SE=0.0202). Thus, the 

simulation results for binary data also indicate that the power based on our derived formulas is 

nearly identical to the empirical power based on the simulated data. 
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Chapter 7 

Application 

 

 

Up to this point, we have discussed the issues of sample size and power calculation for 

CRT with three-level designs. We derived the relevant formulas for important scenarios where 

random assignment takes place at different levels. However, these formulas are not easy to use 

since some are not straightforward and explicit. To make the connection between the theoretical 

methods and their practical applications, we composed a SAS program that allows the user to 

compute power and sample size using our methods. First, we will describe the basis of the 

program and its algorithm. Next, we will present a few hypothetical examples where the program 

can be used to answer practical power and sample size questions. 

 

7.1 The User-Interface Program 

To put theory into practice, we developed a macro program using the SAS software 

(version 9.2; SAS Institute Inc, Cary, North Carolina). The goals of the program are: 

(1) To compute sample size and power using the derived formulas.  

(2) To serve as a tool that enables users to input their own parameters and receive 

customized output.  

(3) To allow users to explore power and sample size results in different design 

scenarios. 
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The program consists of three sections. The first section uses SAS %WINDOW, which is 

part of the macro language included in the Base SAS system. The %WINDOW statement 

provides the functionality of prompting for user input, placing the input into macro variables,  

and resolving them to generate program code. Once defined, the macro variables remain in effect 

until the SAS session is terminated or until the user redefines them through additional input. In 

this program, the %WINDOW statement presents several groups of input fields. These groups 

include different design scenarios (depending on the user’s choices), instructions for the next 

steps, and warnings about an input error. 

The second section of the program consists of a series of macros, which are used to 

compute power or sample size for the six design settings for two types of outcomes, continuous 

and binary, as described in Chapter 4 and Chapter 5. Thus, altogether there are twelve different 

design scenarios. For each different design, four macros were written to compute (1) power, (2) 

sample size of level three, (3) sample size of level two, and (4) sample size of level one. The 

computations are carried out in SAS PROC IML based on the derived formulas. In addition, a 

few macros were composed to count the number of missing entries or to reset all macro variables 

once the users chose begin a new calculation. 

The third part of the program put everything together. This section called for the 

information provided by the first section, ran the calculation from the macros in the second 

section, and provided the results using the %DISPLAY statement. To allow for a variety of 

reporting capabilities, the program followed an algorithm that depended on the user’s input. A 

description of this algorithm is shown in Figure 7.1. 
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Figure 7.1: Algorithm for the User-Interface Program 
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Step 3 
 
Which of the following do you wish to 
compute? 

 Level 3 sample size 
 Level 2 sample size 
 Level 1 sample size 
 Power 

Step 2 
 
Please select the following designs 
(randomizing at): 

 Level three 
 Level two 
 Level one 
 Level two with interaction 
 Level one with interaction 

between treatment and level 3 
 Level one with interaction 

between treatment and level 2 
 

Step 1 
 
What is your main outcome? 

 Continuous 
 Binary 

Step 4 
 

Please enter the following parameters 
(User inputs) 

Error! Only select 
one option! 

Error! One option 
must be selected! 

Both were selected 

None was selected

None was selected 

More than two were 
selected

Error! One option 
must be selected! 

Error! Only select 
one option! 

None was selected 

Missing at least 
one parameter Error! Please fill in 

all the requested 
parameters  

More than one 
were selected

Error! One option 
must be selected! 

Error! Only select 
one option! 

RESULTS 

 

7.2 Application Example for Continuous Data 
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 To illustrate how power and sample size in a three-level study can be computed using our 

methods, we present a power analysis example with continuous data taken from a recent study. 

The example itself can be used as a template for other similar research designs. 

Consider the cluster randomized trial conducted by Calear et at. (2009). The study was 

designed to investigate the effect of an online, self-directed cognitive behavior program in 

preventing and reducing the symptoms of anxiety and depression in an adolescent school-based 

population. The program was based on cognitive behavior therapy. It consisted of five interactive 

modules with information, animated demonstration, quizzes and exercise. The goal of the 

program was to change dysfunctional thoughts, improve interpersonal relationship, and teach the 

students important life skills.  

The outcome variables of interest were anxiety and depressive symptoms. Both anxiety 

and depression quizzes were completed at the beginning and the end of the MoodGYM program. 

Anxiety was measured with the Revised Children’s Manifested Anxiety Scale, which consists of 

37-item self-report questionnaire. A total score was calculated by summing the “Yes” responses 

for the anxiety-related questions. Depressive symptoms were measured with the Center for 

Epidemiological Studies Depression Scale, which consists of 20 items. A total score was 

calculated by summing item scores and are assumed to have a continuous distribution. 

The authors computed a power analysis from a two-level standpoint with students nested 

within classrooms (school effect was not taken into account). Under this assumption, the 

reported sample size was approximately 15 classes of 30 for each treatment arm. The calculation 

was based on detecting a post-intervention effect size of 0.30, with a power of 0.90 and 

alpha=0.05. The ICC coefficient at the class level (between-classes variance divided by total 
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variance) was assumed to be 0.02 and the total variance was assumed to be 36 based on the 

report from the study.  

We will perform a power analysis for the aforementioned study under the three-level 

framework. To do this, we first assume that the schools were randomly sampled from a larger 

population of schools. In addition, we also need to select plausible values for the clustering effect 

at the school level since this information was missing in the paper. We follow the report from the 

National Assessment of Educational Progress, which suggested that with a three-level design 

(students are nested within classrooms and classrooms are nested within schools), the clustering 

effect at classroom level is approximately 2/3rds as large as the clustering effect at the school 

level (Konstantopoulos, 2008). Thus, given the classroom ICC of 0.02 in this study, we obtained 

an ICC of 0.03 for the school effect. This value represent the correlation between two students in 

the same school (and different classrooms).  

It follows that the variances at school level and classroom level can be determined by 

2 2 0.03 36 1.08c T        

2 2 0.02 36 0.72p Tr       

2 2 2 2 36 1.08 1.72 34.2e T c p           

Note that the authors defined 
2

2
c

T




  and 
2

2

p

T

r



 . With an effect size of 0.3, the 

difference measurement between the treatment and control groups is given by: 

2 0.3 36 1.8Td        
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Case 1: Randomize at Level One without Interaction 

Assume for each school the researchers plan to select 6 classrooms each with a class size 

of 30. Furthermore, the researchers will randomize all students equally into two study arms. The 

treatment effect is assumed to be the same across all schools (no interaction effect).  

We propose to compute sample sizes under the case of randomizing at level one without 

interaction using our methods. Given the above information, our first task is to compute the 

sample size of level three (number of schools). Following the algorithm in Figure 7.1, the steps 

to be taken are as follows: 

 Step 1: Continuous outcome 

 Step 2: Randomizing at level one  

 Step 3: Computing sample size at level three 

 Step 4: The parameters entered are 

o Proportion randomized to intervention arm 0.5  ,  

o Expected power  1 0. 09   

o Significance level 0.05   

o Sample size of level two p = 6 

o Sample size of level one n=30  

o Variance between schools 2 1.08c   

o Variance between classes 2 0.72p   

o Residual variance 2 34.2e   

o The treatment difference needed to detect 1.8d   
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Entering the above parameters in the program, we obtain the sample size of c=3 for level 

three. Thus, given the class size of 30 and 6 classrooms per school, we will need 3 schools to 

enroll in the study in order to achieve a power of 90% with 0.05  . 

What if the number of classrooms per school is larger or smaller? Let us go back to step 

4 and increase the sample size of level 2 from 6 to 10. The result from the program showed that 

we now only need 2 schools instead of 3 schools. On the other hand, if we reduce the sample size 

of level two from 6 to 4, the program then indicated that we now will need 4 schools instead of 3 

schools. 

Now, fixing the total number of classrooms per school at 6, how many schools will we 

need if the class size is either larger or smaller? To answer this question, we go back to step 4 of 

the program and increase the sample size at level one (number of students per class) from 30 to 

40. The result suggests that we will need only 2 schools instead of 3 schools in this case. On the 

contrary, if we reduce the class size from 30 to 20, the result showed that we then need 4 schools 

instead of 3 schools in order to achieve the same power.  

Table 7.1 displays the results of a few different sample size combinations to achieve a 

power of 90% with 0.05   for the parameters given in the current study.  

 

Case 2: Randomize at Level Two with Interaction 

For further illustration, now let us assume that instead of randomizing at the student 

level, the researchers decide to randomly assign the classrooms in each school to the two study 

arms. In addition, we also assume that the treatment effect is not the same across schools. We 

now have a different study design where randomization takes place at the second level and an 

interaction effect between treatment and schools exists.  
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Table 7.1:  

Some Sample Size Combinations for the YouthMood Project Trial 

Randomizing at Level One without Interaction 

Class size Number of 
classrooms 

Number of Schools 

10 4 12 
 6 8 
 8 6 
 10 5 

20 4 6 
 6 4 
 8 3 
 10 3 

30 4 4 
 6 3 
 8 2 
 10 2 

40 4 3 
 6 2 
 8 2 
 10 2 
 

Assuming all other parameters remain the same, denote the variance of the interaction 

effect by 2
ct . Suppose the magnitude of this new variance term is about 20% of the variance 

across schools, we obtain the following: 

2 20.20 0.216ct c     

2 2 2 2 2 36 1.08 1.72 0.216 33.98e T c p ct              

Again, assume for each school the researchers plan to select 6 classrooms each with a 

class size of 30. Given the algorithm in Figure 7.1, the steps in the program now can be modified 

as follows 

 Step 1: Continuous outcome 

 Step 2: Randomizing at level one with interaction between treatment and level three 
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 Step 3: Computing sample size at level three 

 Step 4: The parameters entered are 

o Proportion randomized to intervention arm 0.5  ,  

o Expected power  1 0.90   

o Significance level 0.05   

o Sample size of level two p=6 

o Sample size of level one n=30  

o Variance between schools 2 1.08c   

o Variance between classes 2 0.72p   

o Variance of the interaction between treatment and school  2 0.216ct 

o Residual variance  2 33.98e 

o The treatment difference needed to detect 1.8d   

Entering the above into the program, we obtain a total sample size of 8 schools in order 

to achieve a power of 90% with 0.05  . 

How would this sample size change if the number of classrooms per school changes? 

Going back to step 4 and increase the sample size of level two from 6 to 10, we see that only 7 

schools are needed instead of 8 schools. On the hand, if we reduce the sample size of level two 

from 6 to 4, the program then indicates that we need 10 schools instead of 8 schools as initially 

stated. 

To examine the effect of class size, we fix the total number of classrooms per school at 6 

and vary the number of students per classroom. Modifying step 4 of the program by increasing 

the sample size at level one (number of students per class) from 30 to 40. The result suggests that 
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we will only need 7 schools in this case. However, reducing the sample size at level one from 30 

to 20 indicates that we will need 9 schools instead of 6. Table 7.2 displays the results of a few 

sample size combinations to achieve a power of 90% with 0.05   for the parameters given in 

this hypothesized scenario. 

 

Table 7.2:  

Some Sample Size Combinations for the YouthMood Project Trial 

Randomizing at Level Two with Interaction 

Class size Number of classrooms Number of Schools 

10 4 17 
 6 13 
 8 11 
 10 9 

20 4 12 
 6 9 
 8 8 
 10 7 

30 4 10 
 6 8 
 8 7 
 10 7 

40 4 9 
 6 7 
 8 7 
 10 6 

 

 

7.3 Application Example for Binary Data 

Consider the Dutch Helping Hands Trial, where researchers studied methods to reduce 

hospital-acquired infections through a preventive measure –hand hygiene (Teerenstra et al., 
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2010). In this study, two methods to improve adherence to hand hygiene guidelines in hospitals 

were compared. Both methods targeted on changing the nurse behavior.  

The first method focused on the nurses (education, feedback) and the wards (facilities). 

The second method added other elements such as social influence in groups (norm and target 

setting within the nurse team). Random assignment took place at the ward level, i.e. each method 

is randomized to a subset of wards (level three), nurses (level two), and evaluations (level one). 

Evaluations were binary outcomes reflecting whether the guidelines are followed for each hand 

hygiene opportunity. 

In their power analysis, the researchers forecasted that the probabilities of adherence in 

the standard group and the group with extended strategy to be 0.60 and 0.70 respectively. It is 

assumed that the behavior of an individual nurse is fairly consistent and nurses within the same 

ward share some common working environment. Based on past studies, the intraclass correlation 

between the wards was set as 0.3   and the intraclass correlation between nurses (within the 

same ward) was set as . The suggested sample sizes were 3 evaluations on approximately 

15 nurses on each ward. Assuming the total variance was approximated at  based on the 

study report, and since the authors define 

0.6r 

2 0.1T 

2

2
c

T




  and 
2 2

2

c

T

r p 



 , the variances of each level 

can be computed by: 

2 2 0.3 0.1 0.03c T        and   2 2 2 0.6 0.1 0.06c p Tr       

2 0.06 0.03 0.03p     

Using the parameters given above, we propose to compute the sample size under the 

context of three-level design using the formulas derived from our methods. The following steps 

in the program will be taken: 
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 Step 1: Binary outcome 

 Step 2: Randomizing at level three 

 Step 3: Computing sample size at level three 

 Step 4: The parameters entered are 

o Proportion randomized to intervention arm 0.5  ,  

o Expected power  1 0. 08   

o Significance level 0.05   

o Sample size of level two p=15 

o Sample size of level one n=3 

o Variance between wards 2  0.03c 

o Variance between nurses 2 0.03p   

o The probability of event in treatment group p-treat=0.7 

o The probability of event in control group p-control=0.6 

 

Inputting the above parameters into the sample size program, we arrive at a total sample 

size of 24 wards for a power of 80% and 0.05  . 

How would variation on the number of nurses per each ward affect this sample size 

results? Suppose the number of nurses (sample size at level 2) is increased from 15 to 20 nurses 

per each ward. Making this modification in the program shows that we now need only 20 wards. 

On the other hand, reducing the number of nurses per ward from 15 down to 10 brought the total 

wards required to achieve the same level of power up to 32 wards instead of 24. 

Suppose the number of nurses in each ward is fixed at 15. Adjusting sample size at the 

first level (number of evaluations) also affects the sample size results for level three.  Suppose 
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the number of evaluations is increased from 3 to 5 per nurse. This modification shows that we 

now need only 18 wards. On the other hand, reducing the number of evaluation per nurse from 3 

down to 2 brought the total wards required to achieve the same level of power up to 32 wards 

instead of 24 wards. Table 7.3 shows the sample size combinations for the given parameters 

described in step 4 above. 

 

Table 7.3:  

Some Sample Size Combinations for the Dutch Helping Hands Trial 

Randomization at Level Three 

Number of 
Evaluations  

Number of Nurses Number of Wards 

2 5 80 
 10 44 
 15 32 
 20 26 
4 5 44 
 10 26 
 15 20 
 20 18 
6 5 32 
 10 20 
 15 16 
 20 14 
8 5 26 
 10 18 
 15 14 
 20 12 
 

 

7.4 Comments on the Application Examples 

Above are a few examples to illustrate the use of the user-interface program and how our 

derived formulas can be applied to compute sample size in different study design settings. The 
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values chosen in Table 7.1, Table 7.2, and Table 7.3 were based on a range of typical sample 

sizes that were seen in similar studies. The program, however, was designed to be flexible and 

allow the users to specify any combination sets of parameters. For example, although only 

sample sizes at level one and level two were allowed to change, it should be noted that similar 

analyses can easily be done by looking at different sets of combinations of the desired power and 

different values of the intraclass correlation as well as varying the sample size at level three. 

The goal of the application examples was to demonstrate the use of our formulas and our 

program to provide the researchers with several trade-off options to achieve the appropriate 

sample sizes. A user manual is provided in Appendix A for more details on how to implement 

the SAS program. 
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Chapter 8 

Discussion and Future Work 

 

This chapter presents the principal findings, discusses the results, and gives a list of 

future work that can build on the work presented here. We will start by providing a brief 

summary of the work that was detailed in previous chapters. We then will discuss the 

significance of this work by interpreting the results in light of our current knowledge about 

sample size and power in cluster randomized trials. Finally, we will suggest extensions for future 

work. 

 

8.1 Summary of Work 

Motivated by the need of a proper study design, this work provides sample size and 

power calculations for three-level cluster randomized trials. We considered a two-group 

comparison involving one treatment arm and one control arm. We assumed no covariates were 

included in the model. We proposed the relevant power functions in six important settings for 

two of the most popular outcomes: continuous and binary. The six scenarios depend on which 

level the allocation of treatment takes place and whether there is an interaction effect. They are: 

(1) Randomizing at level three 

(2) Randomizing at level two without interaction 

(3) Randomizing at level two with interaction between treatment and level three 

(4) Randomizing at level one without interaction 

(5) Randomizing at level one with interaction between level three and treatment 
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(6) Randomizing at level one with interaction between level two and treatment. 

We derived our power functions under the framework of generalized linear mixed model 

(GLMM) theory. For continuous outcomes, we used a robust variance estimator to derive the 

variance of the treatment effects. For binary outcomes, we applied the pseudo-likelihood 

approach to approximate the variance of the estimated treatment effects using a first-order Taylor 

series expansion. In the cases where the inverse of the correlation matrix could be written 

explicitly, we derived close forms for the design effects and for the power function respectively. 

For situations where a closed form solution does not exist, we proposed general formulas that 

yield satisfactory results for every setting. 

To assess the accuracy of our formulas, we conducted a simulation study in which we 

compared the empirical power and the estimated power. The simulation programs were written 

such that any set of parameters can be tested. We reported the simulation results for 27 

combinations of parameters per each design settings. We simulated 784 sets of data for each 

combination based on a margin of error of 0.035. Thus, altogether we had 21,168 sets of data for 

each of the six different scenarios per each type of outcome. The simulation results confirmed 

that our derived formulas for sample size and power are accurate under the conditions that we 

examined. 

Finally, we demonstrated the application of our power and sample size through the 

development of a user-interface SAS program. This program allows the researchers to calculate 

approximate sample sizes and power for a variety of design settings described above. To make 

the calculation, certain information is needed about the specific parameters. These parameters 

include the difference in the treatment effects, the variances of the random effects, the level of 
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significance alpha, and the proportion of the sample that is allocated into each treatment arm. We 

illustrated the use of the SAS program through some practical examples taken from past studies. 

8.2 Discussion 

In this work, we presented the relevant formulas to compute sample size and power for 

several important three-level study designs. Our formulas were derived based on the GLMM 

method, which has been proven to be a powerful technique to handle correlated outcomes. 

GLMM combines the properties of the two popular statistical frameworks, linear mixed models 

(which allows for random effects) and generalized linear models (which handle non-normal data 

via the use of the link functions and exponential family).  

As discussed in Chapter 2, statistical models that have been used for data with nested 

correlation structure are classified into two categories: the population-averaged (marginal) 

models or the cluster-specific (conditional) models. Each approach has its own advantages. Since 

GLMM is a subject-specific approach, our formulas estimated the parameters of the random 

effects for each subject, and estimated the fixed effect as a common factor. Thus, it makes 

specific use of the within-subject information as oppose to population-average approach. 

It should be noticed that our power functions were applicable only for two-arm trials. 

More specifically, we focused on the test for treatment contrast drawn from two treatment 

groups, not from multiple treatment effects. The reason behind this is that in most published 

literature, multilevel designs were chosen to achieve the power of a particular treatment contrast. 

Even when several treatments are being compared, typically there is always a contrast that plays 

the most important role to the researchers. Calculations for sample size and power would then be 

based on this main treatment contrast. 
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In some previous similar work, the sample size formulas were constructed from the Z-

test under asymptotic normal distribution (Campbell et al., 2004; Teerenstra et al., 2008; Dang et 

al., 2008). In multilevel design, however, power depends on the magnitude of the variance 

components that are usually unknown. Thus, a better choice of for the sampling distribution of 

the test statistic should be a t-distribution, which has a thicker tail than the normal distribution. 

To gain better accuracy for our results, we derived the power functions based on the CDF of a t- 

distribution, adjusting for appropriate degrees of freedom. This helped to avoid the 

overestimation of power from the same critical value based on the standard normal distribution. 

In this work we discussed different design situations where randomization can take place 

at any level. In the cases where an interation might occur, we considered only the two-way 

interaction effects. That is, we only looked at the interactions between treatment and level three 

or treatment and level two. While conceptionally a three-way interaction effect can happen, in 

reality this model is not practical. Firstly, from our observation the convergence rate of GLMM 

model with three-way interaction is very slow, especially for data with three-level structure. 

Secondly, in the design stage it is very difficult to pre-specify the variance of this three-way 

interaction term. Lastly, it is hard to avoid the confounding effect in models with three-way 

interaction. For example, a treatment effect that varies between physicians will also vary 

between practices, since physicians are nested within practices. 

Our power functions were derived from the unadjusted models where no covariate was 

included. However, sample sizes that include covariates other than treatment effect can be 

incorporated by following the same procedure. Our methods can be extended so that the 

correlation matrix will account for the presence of the covariates. Nevertheless, adding 

covariates into the models should not bring any significant changes in the magnitude of the 
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treatment effect, since in principle the covariates should not be related to the treatment. 

However, including covariates will affect the variance of each level and eventually will change 

the total variance. Generally, adding other covariates besides treatment will decrease the residual 

variance and increase the power. It will also reduce the degrees of freedom for the test statistics 

(Murray, 1998). Thus, the sample size formulas we presented here yield a more conservative 

result as oppose to methods where covariates are included. In addition, it is common for power 

and sample size software to account only for the treatment effect and not include the covariates. 

As always, one needs to specify the underlying correlation structure to compute power in 

a multilevel design study. In this work, we assumed the most convenient and the most common 

choice—the compound symmetry correlation structure. The nested exchangeable structure we 

used for the three-level design is a direct generalization of the exchangeable structure that is 

commonly used in two-level models. This structure is suitable when the units in level one are 

exchangeable within the level two units, and the level two units are exchangeable within the 

level three units. Although more complex correlation structures such as AR1 or Toeplitz can be 

applied, we argue that at the early design stage, it is doubtful that we know the true correlation 

structure unless some sensitivity analyses were conducted beforehand. In addition, a more 

complex correlation structure introduces theoretical difficulties that are not necessary at the 

design stage. 

Knowledge of plausible values of the variances or the two intraclass correlations is 

required for our computation. However, the ability to a priori postulate the intraclass correlation 

when designing a cluster randomized trial is limited. Such estimates are sparse in the literature, 

especially for three-level designs. To overcome this problem, a range of plausible values of the 

two intraclass correlations should be considered in order to assess the sensitivity of the results to 
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the misspecification of the parameters. Teerenstra et al. (2008) suggested that the researchers 

should examine the two-level intraclass correlations that are currently available in the literature 

and apply these values to the three-level models. Another way to facilitate the estimation of the 

intraclass correlation is to base on intermediate assessment of the within and between variances. 

Vierron and Giraudeau (2007) suggested that the recruitment can be flexible enough to be 

shortened or extended depending on the results of the internal pilot study. Thus, adjustment of 

the sample sizes to the intraclass correlation estimates can be done accordingly. 

Our methods made the assumption that all designs were balanced. Although in practice it 

is a natural consequence of recruitment process that the sample sizes can be unequal, it has been 

suggested that imbalance designs should be avoided as much as possible. The connection 

between imbalanced cluster sizes and power computation is intuitively obvious. Firstly, the 

estimates of small cluster sizes will be less accurate than those of larger cluster sizes in 

imbalanced designs. Secondly, the addition of more subjects into larger clusters does not 

compensate for the lost of precision in smaller clusters (Eldridge et al., 2006). Thus, our study 

was based on a balanced design, since imbalance might lead to biased estimates and decrease the 

reliability of the results. 

In this work we only examined power in the setting of a completely randomized design. 

Although other designs such as matched pairs and stratified randomized designs are also 

available, the completely randomized design is chosen for pragmatic reasons. First, it is the 

simplest and the most popular design in CRT. It allows for a wide number of statistical methods 

to be applied in the analysis steps and serves as a basis for deriving another sample size 

algorithm for more complex designs. Second, sensitivity analyses based on other designs can 

always be explored when needed. 
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In our simulation study, we examined a number of combinations defined by different 

values of the variances and sample sizes at each level. Although the number of parameters was 

limited, these parameters were selected from analysis of data of previous CRTs encountered in 

the literature. Therefore, the number of units on each level and the intraclass correlation were 

similar to those observed in this area of research. In addition, the simulation program was design 

in such a way that the same finding can be examined across a much larger number of scenarios. 

We speculate that similar conclusions would be obtained in these different settings. 

Most existing sample size calculators and software rely heavily on simulation algorithms. 

Such method is limited for the GLMM approach, since the convergence rate is very low for data 

with small or medium sample sizes. Besides, software based on simulations usually requires the 

users to specify the variance-covariance structures, which sometimes can be confusing and 

complicated. Our sample size program focuses on the user-friendly aspect. It computes sample 

sizes and power directly from SAS IML and provided the results much faster than does 

simulation. 

In most studies with a two-level design, either the clusters or the subjects within clusters 

can be randomized into different treatment conditions, suggesting that random assignment can be 

done at any level. The same logic holds for three-level designs, except that the nested structure is 

more complicated. While most previous work in power and sample size for three-level studies 

focused mainly on designs where random assignment takes place at the highest level, our study 

considered other situations that might be encountered in practice. Although the formulas we 

provided were model-specific, we present the results for a wide variety of different models 

corresponding to different designs. We allowed for the fact that randomization can occur at any 

level. We also considered the cases when interaction effects occurred, including the interaction 
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between treatment with each of the higher levels, level three and level two. By addressing the 

vast different designs, we provide a versatile tool to aid researchers in making their sample size 

decisions. 

 

8.3 Future work 

Taken as a whole, our study provided the general statistical formulas to compute power 

and sample size in three-level cluster randomized data under GLMM approach. It should be 

pointed out that the work presented here is just an initial step with many further steps to follow. 

Additional methodological and computational work is necessary and important in this research 

area. 

First, our methods only focused on continuous and binary data, whereas other types of 

data can be encountered in practice. By following the same path, we believe that relevant 

formulas for different types of data can be derived using the similar methods. For example, under 

the framework of GLMM different link functions can be selected and different variance 

structures can be constructed. Thus, future work on this topic can include extending the same set 

of formulas to ordinal, nominal, or count data.   

The extensions of this work to longitudinal correlated data at level 1 would be useful in 

practice. Although in our earlier discussion, we advocated for the use of compound symmetry 

variance-covariance structure in the design stage, there are certainly situations when other 

structures are more appropriate. For example, another area that we should investigate in our 

future work is to apply similar findings to repeated measures or longitudinal studies. Following 

the same procedure we can develop formulas that yield sample sizes requirement under other 

variance-covariance structures such as first-order autoregressive, toeplitz, or other more complex 
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structures with different variances at different time points. One of the advantages of our finding 

is the fact that as long as the variance structure is correctly specified, proper modifications can be 

implemented under GLMM models to address the sample size problem. Hence, future work for 

repeated measures and longitudinal studies is feasible. 

Our formulas were based on the assumption that all levels were treated as random. This 

assumption implies that the sample sizes of each level are selected randomly from a larger 

population. In practice, this does not always happen. In designing CRT, it is often the case that 

available number of clusters is somewhat limited. For example, consider a three-level CRT of 

center—physician—patient, where only three centers are available in the community. In this 

situation, if all three centers are selected in the study then it is more appropriate to treat center as 

a fixed effect rather than a random effect. Thus, another extension of our work is to examine 

situations where any level(s) can be treated as a fixed effect when the corresponding units of that 

level are not randomly selected. 

Even though our work provided methods for computing sample sizes, it did not account 

for the cost involved in the design stage. In any nested study, the units at each level have a cost 

associate with them and the researchers need to decide on a sample size which will minimize 

cost or be within a certain budget. Obviously, increasing sample sizes of any level can be a trade-

off between the gain in statistical power and the recruitment costs. Optimizing the choice of 

number of units per each level under certain budget constraints is another practical issue that we 

should examine. A cost function can be derived and used when costs for sampling an additional 

unit of any level can be quantified. In addition, minimum budget required for a given power or 

precision should also be examined separately for each design. 
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Although our user-interface program is a versatile tool for computing sample size and 

power for the designs under examination, it is by no means a final product. Several features can 

be added to the program, for example, the addition of a help menu, a printout option for final 

report, and more graphical descriptions of the power functions. The program can also serve as a 

foundation for the development of independent software – not necessarily on the SAS platform –  

to compute power and sample size for CRT. 

Finally, a number of complications in computing sample size and power in individual 

randomized studies can equally be seen in CRT. To name a few, these issues include: designs 

with more than one treatment group, designs with unequal sample sizes between treatment 

groups, matched-pair designs and stratified designs, trials with losses to follow-up and missing 

data, longitudinal designs with different attrition rates. These issues can be topics for future 

research. 

8.4 Concluding Remarks 

In the early stage of planning any clinical trial or experiment, it has been widely accepted 

that the evaluation of sample size is crucial. Sample size determination is an important task, as 

insufficient sample size can lead to inadequate power and inaccurate findings, whereas excessive 

sample size is a waste of resources.  

We contend that this work serves as a useful and practical application for sample size and 

power planning in three-level study designs. Our formulas and our user interface SAS program 

provides users with a quick tool to estimate sample size and power in a variety of different 

design settings.  

Finally, calculation of power and sample size involves more than simply making the best 

guesses about the parameters of a proposed analysis. It requires assumptions that typically cannot 
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be tested until the actual data have been collected. To obtain accurate results from our methods, 

researchers should be able to make reasonable estimates and assumptions on preliminary 

information that are available. If the inputs are inappropriate for the model under examination or 

if the wrong method is used, the wrong answer will emerge and the sample size results will no 

longer be appropriate for the study of interest. 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 132
 

References 

 

 

Brown, W. J., and Draper, D. (2000), “Implementation and Performance Issues in the Bayesian 

and Likelihood Fitting of Multilevel Models,” Computational Statistics, 15, 391-420. 

Brown, H., and Prescott, R. (2006). Applied Mixed Models in Medicine.  Great Britain: John 

Willey and Sons. 

Calear, A.L., Christensen H., Mackinnon A., Griffiths, K.M., and O'Kearney, R. (2009), “The 

YouthMood Project: a Cluster Randomized Controlled Trial of an Online Cognitive 

Behavioral Program with Adolescents,” Journal of Consulting and Clinical Psychology, 

77,1021-1032. 

Campbell, MK., Thomson, S., Ramsay, R.C., MacLennan, GS., and Grimshaw, JM. (2004), 

“Sample Size Calculator for Cluster Randomized Trials,” Computers in Biology and 

Medicine, 34, 113-125. 

Casella, G., and Berger, L.R. (2005), Statistical Inference, China: Thomson Learning. 

Chow, S., Shao, J., and Wang, H. (2008), Sample Size Calculations in Clinical Research, New 

York: Chapman & Hall. 

Cohen, J. (1988), Statistical Power Analysis for the Behavioral Sciences, New York: Academic 

Press.  

Cools, W., Noortgate, W.V., and Onghena, P. (2008), “ML-DEs: A program for designing efficient 

multilevel studies,” Behavior Research Methods, 40, 236-249. 

Cornfield, J. (1978), “Randomization by Group: a Formal Analysis,” American Journal of 

Epidemiology, 108, 101-102. 



www.manaraa.com

 133
 

Daniel, W.W. (2009), Biostatistics, a Foundation for Analysis in the Health Science (8th edition), 

New Jersey: John Willey and Sons. 

Dang, Q., Mazumdar, S., and Houck, P.R. (2008), “Sample Size and Power Calculations Based on 

Generalized Linear Mixed Models with Correlated Binary Outcomes,” Computer Methods 

and Programs in Biomedicine, 91, 122-127. 

Dedrick, F.R., Ferron, M.J., Hess, R.M., Hogarty, Y.K., Kromrey, D.J., Lang, R.T., Nile,J.D., and 

Lee, S.R. (2009), “Multilevel Modeling: A Review of Methodological Issues and 

Applications,” Review of Educational Research, 1, 69-102. 

Donner, A., and Klar, N. (2000), Design and Analysis of Cluster Randomization Trials in Health 

Research. London: Arnold. 

Donner A., and Klar N. (2004), “Pitfalls of and Controversies in Cluster Randomized Trials,” 

American Journal of Public Health, 94, 416-422. 

Eldridge, MS., Ashby, D., and Kerry, S. (2006), “Sample Size for Cluster Randomized Trials: 

Effect of Coefficient of Variation of Cluster Size and Analysis Method,” International 

Journal of Epidemiology, 35, 1292-1300. 

Faggiano, F., Richardson, C., Bohrn, K., and Galanti, M. R. (2007), “A cluster randomized 

controlled trial of school-based prevention of tobacco, alcohol and drug use: The EU-Dap 

design and study population,” Preventive Medicine, 44, 170-173. 

Feng, Z., and Grizzle, J.E. (1992), “Correlated Binomial Variates: Properties of Estimator of 

Intraclass Correlation and Its Effect on Sample Size Calculation,” Statistics in Medicine, 

11,1607-1614. 

Freedman, L.S., Green, S.B., and Byar, D.P. (1990), “Assessing The Gain in Efficiency due to 

Matching in A Community Intervention Study,” Statistics in Medicine, 9, 943-953. 



www.manaraa.com

 134
 

Gail, M.H., Mark, S.D., Carroll, R.J., Green. S.B., and Pee, D. (1996), “On Design Considerations 

and Randomization-Based Inference for Community Intervention Trials,” Statistics in 

Medicine, 15,1069 -1092. 

Browne, W.J., Golalizadeh Lahi, M. and Parker, R.M.A. (2009), “A Guide to Sample Size 

Calculations for Random Effect Models via Simulation and the MLPowSim Software 

Package,”. University of Bristol. 

Grandes, G., Sanchez, A.,  Sanchez-Pinilla R. O., Torcal J.,  Montoya, I., Lizarraga, K., and Serra, 

J. (2009), “Effectiveness of Physical Activity Advice and Prescription by Physicians in 

Routine Primary Care,” Archives of Internal Medicine, 7: 694-701. 

Guittet, L., Giraudeau, B., and Ravaud, P. (2005) “A Priori Postulated and Real Power in Cluster 

Randomized Trials: Mind the Gap,” BMC Medical Research Methodology, 5, 25. 

Hayes, RJ., and Bennet, S. (1999), “Simple Sample Size Calculation for Cluster-Randomized 

Trials,” Journal of International Epidemiological Assciation, 28, 319-326. 

Hedeker, D., Gibbons, R.D., and Waternaux, C. (1999), “Sample Size Estimation for Longitudinal 

Designs With Attrition: Comparing Time-Related Contrasts between Two Groups,” 

Journal of Educational and Behavioral Statistics, 24, 70-93. 

Hedges, L., and Hedberg, E.C. (2007), “Intraclass Correlation Values for Planning Group-

Randomized Trials in Education,” Journal of Educational Evaluation and Policy Analysis, 

29, 60-87. 

Henderson, H.V. and Searle, S.R. (1981), “On Deriving The Inverse of a Sum of Matrices,” 

Siam Review, 23, 53-60. 



www.manaraa.com

 135
 

Heo, M., and Leon A.C. (2009), "Sample Size Requirements to Detect an Intervention by Time 

Interaction in Longitudinal Cluster Randomized Clinical Trials," Statistics in Medicine, 28, 

1017-1027.  

Hox, J. (2002), Multilevel Analysis Techniques and Applications. USA: Lawrence Erlbaum 

Associates Publishers. 

Hsieh, F.Y. (1988), “Sample Size Formulas for Intervention Studies with the Cluster as Unit of 

Randomization,” Statistics in Medicine, 8, 1195-1201. 

Kish, L. (1965), Survey Sampling. New York: John Wiley. 

Klar, N., and Donner, A. (2001), “Current and Future Challenges in the Design and Analysis of 

Cluster Randomization Trials,” Statistics in Medicine, 20, 3729–3740. 

Konstantopoulos, S. (2008), “The Power of the Test for Treatment Effects in Three-Level 

Cluster Randomized Designs,” Journal for Research on Educational Effectiveness, 1, 

66-88. 

Krist A.H., Woolf, S.H., Johnson R.E., Rothemich S.F., Cunningham T.D., Longo, R.D., Peele, E., 

Matzke, G. “The Effect of a Personalized Healthcare Record on the Delivery of Preventive 

Care” (in review). 

Littell, R.C, Milliken, G.A., Stroup, W.W, Wolfinger, R.D, and Schabenerger,O. (2007), SAS for 

Mixed Models, Second Edition. Cary, NC: SAS Institute Inc. 

Maas, C. J. M., and Hox, J. J. (2005), “Sufficient Sample Sizes for Multilevel Modeling,” 

European Journal of Research Methods for the Behavioral & Social Sciences, 1, 85-91. 

Murphy, K. R., Myors, B. (2004), Statistical power analysis: A simple and general 

model for traditional and modern hypothesis tests (2nd ed.), Mahwah, NJ: Erlbaum. 



www.manaraa.com

 136
 

Murray, D.M. (1998), Design and Analysis of Group-Randomized Trials. New York: Oxford 

University Press 

Murray, D.M., Pals, S.L., Blitstein, J.L., Alfano, C.M., and Lehman, J. (2008), “Design and 

Analysis of Group-Randomized Trials in Cancer: A Review of Current Practices.” Journal 

of National Cancer Institute, 100: 483-492. 

Murray, D. M., Varnell, S. P., and Blitstein, J. L. (2004), “Design and Analysis of Group-

Randomized Trials: A Review of Recent Methodological Developments,” American 

Journal of Public Health, 94, 423–432. 

Murray,D.M. , and Wolfinger, R.D. (1994), “Analysis Issues in the Evaluation Community Trials: 

Progress toward Solutions in SAS/STAT MIXED,” Journal of Community Psychology 

CSAP. Special Issue, 140-154 

Pan,W. (2001), “Sample Size and Power Calculations with Correlated Binary Data,” Control 

Clinical Trials, 22, 211-227. 

Raudenbush, S.W. (1993), Hierarchical linear models and experimental design.  In Lynne K., and 

Edwards, Applied analysis of variance in behavioral science, New York:  Marcel Dekker. 

Raudenbush, S.W. (1997), "Statistical Analysis and Optimal Design for Cluster Randomized 

Trials," Psychological methods, 2.2, 173-185. 

Raudenbush, S.W., and Liu, X. (2000), "Statistical Power and Optimal Design for Multisite 

Randomized Trials," Psychological methods, 5.2, 99-213.  

Raudenbush, S.W., and Bryk, A.S. (2002), Hierrarchial Linear Models: Applications and Data 

Analysis Methods, Newbury Park, CA: Sage. 



www.manaraa.com

 137
 

Roy, A., Bhaumik, D.K., Aryal1,S., and Gibbons, D.R. (2007), “Sample Size Determination for 

Hierarchical Longitudinal Designs with Differential Attrition Rates," Biometrics, 63, 699-

707. 

Shih,W.J. (1997), “Sample size and power calculations for periodontal and other studies with 

clustered sample using the method of generalized estimating equations,” Biometrical 

Journal, 39, 899-908. 

Snijders, T.,  and Bosker, R. (1993), "Standard Errors and Sample Sizes for Two-Level Research," 

Journal of educational statistics, 18,  237-259.  

Teerenstra,S., Moerbeek,M.,.Achterberg T., Pelzer, B.J., Borm,G.F. (2008) “Sample size 

Calculations for Three-Level Cluster Randomized Trials,” Clinical Trials , 5, 486-95. 

 Teerenstra, S., Lu,B., Preisser, JS., Achterberg,TV.,  and Borm,GF (2010), “Sample Size 

Considerations for GEE Analyses of Three-Level Cluster Randomized Trials,” Biometrics. 

2010 (in press) 

Turner, R.M., Prevost, A.T., and Thompson, S.G. (2004), “Allowing for Imprecision of the 

Intracluster Correlation Coefficient in the Design Of Cluster Randomized Trials,” Statistics 

in Medicine, 23, 1195–1214. 

Vierron, E., Giraudeau, B. (2007), “Sample Size Calculation for Multicenter Randomized Trial: 

Taking the Center Effect into Account,” Contemporary Clinical Trials, 28, 451-458. 

Zucker, M.D. (1990), “An Analysis of Variance Pitfall: The Fixed Effects Analysis in a Nested 

Design,” Educational and Psychological Measurement, 50, 731—738. 

 

 

 



www.manaraa.com

 138
 

Appendix A 

User’s Guide for the SAS Program 

 

 

This manual provides the researchers with a guide to effectively use the interface SAS 

program that was written to demonstrate the application of our work. The program was 

developed to address sample size and power questions for three-level study designs with 

continuous and binary outcomes. The formulas adopted in this program were derived in Chapter 

4 and Chapter 5. Application examples were presented in Chapter 7. 

When the users first run the program, a brief description will be shown on the screen to 

give basic instructions as to how to choose the options and how to move around in the program. 

The program consists of four steps. The users will: 

 Choose an option by typing x into the blank 

 Use TAB key to move from one field to another field 

 Press ENTER to move to the next step 

A.1 First step 

In the first step, the users will be asked to choose the type of outcomes for their 

experiment. The choices are either continuous or binary: 
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The selection is done by typing an x into the blank provided in front of the options. Here 

the users are required to select only one of the two options. If neither of the options were selected 

or both options were selected, an error message will appear to ask the users to re-enter their 

input. If the selection is done correctly, the program will move to the next step after the users hit 

ENTER.  The above screen shows an example when continuous outcome was chosen. 

A.2 Second step 

In the second step the users will be asked to choose the study design. There are six study 

designs available. The following screen will appear: 

 

Again, the users are required to select one of the six options by typing an x in the blanks. 

An error message will appear if none of the options was selected or more than one were selected. 

The above screen shows an example when randomization at level three was chosen. The users 

will hit ENTER to move to the next step. 

A.3 Third step 

 In the third step, the users will be asked to select what they desire to compute. The 

choices include sample sizes for the three levels or power. Again, one and only one option must 

be selected in order to move to the next step. An error message will appear if the instructions 

were not followed properly. 
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For demonstration, the following screen will appear if the users decide to compute level 

three sample size. 

 

A.4 Fourth step 

Hitting ENTER after the third step, the users will then be asked to enter certain 

parameters. The number of parameters depends on the options chosen in previous steps. The 

following lists all possible parameters and instruction on how to input them: 

Proportion of sample size allocated to treatment: 

By default, this proportion is set at 0.5 (equal allocation). However, any proportion can 

be chosen as long as the product of the chosen sample size at the corresponding level and this 

proportion is an integer. For example, suppose randomization takes place at level three and the 

researchers decide on a proportion of 0.6 for treatment arm. A sample size of 8 for level three 

will be an illegal input in this case since 0.6 × 8 = 4.8 is not an integer. However, a sample size 

of 10 for level three will be a valid input since 0.6 × 10 = 6 is an integer. 
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The power expected to achieve 

 Here the users are required to type in the value for the power expected to achieve in their 

study. These values typically range from 0.75 to 0.90. The input is required to be in decimal 

format. 

Level one (two, three) sample size 

For these parameters, the users are expected to type in their anticipated sample sizes for 

the corresponding levels. The numbers are supposed to be integers. 

Variance between level one (two, three) 

 These variances are usually computed from a pilot study or selected from previous 

studies. The variances are expected to be in integer or decimal formats. 

Variance of the interaction 

 If a design with interaction effect was selected in previous steps, the program will be 

prompted to ask for the variance of the interaction effects. Again, these variances are usually 

computed from a pilot study or selected from previous studies. They are expected to be in integer 

or decimal formats. 

Treatment difference 

 If the task is to calculate sample size or power for continuous outcome, users will be 

asked to input the difference of the two treatment means to be detected. Values of treatment 

difference are expected to be in integer or decimal formats. 

The probabilities of event in treatment group and control group 

If the task is to calculate sample size or power for binary outcome, users will be asked to 

input the expected control group proportion and the expected proportion in the intervention 

group. These proportions should be entered in decimal format. 
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Alpha 

 The level of significance alpha is set at a default value of 0.05. However, the default can 

be changed if the users wish to do so.  

 The following screen shows an example of the parameters input for step 4 when the 

requirement was to compute sample size at level three for continuous outcome where 

randomization takes place at level three. The sample size result is 8, after hitting ENTER after all 

parameters were provided. 

 

 

 

 



www.manaraa.com

 143
 

After completing step 4, the users will be prompted to three options as follows 

 

To start a new calculation 

In choosing this option, the users will be brought to step one of a new calculation. All displays of 

the old screen will disappear. 

Modify previous calculation 

In choosing this option, the users will be brought back to the beginning of step 4 of the same 

calculation. All displays from the old screen will remain the same. The users are allowed to 

modify the parameters in step 4 and obtain the new result. 

End the program 

When this option is selected, the SAS program will stop running and the interface screen will be 

closed. 
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Appendix B 

Simulation Results 

 

 
 
The following tables in Appendix B showed results of the simulation study for different 

randomization schemes. For all tables, the notations are defined as follows: 

c: Sample size of level three 

p: Sample size of level two 

n: Sample size of level oneT  

d: The difference in treatment effect 

 : Estimated power based on simulation 

  : Theoretical power based on the derived formulas 

 : Proportion of sample size allocated to the treatment group 

c : Probability of the event of interest in control group (for binary cases) 

2
c : Variance between level three 

2
p : Variance between level two 

2
e : Variance between level one 

2
ct : Variance of the interaction between level three and treatment 

2
pt : Variance of the interaction between level three and treatment 
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Table B.1: Simulation Results for Case 1 
Randomize at Level Three—Continuous Outcome 

c p n d  95% CI of  

10 4 10 0.67 0.74 (0.65, 0.75) 

 20 0.64 0.71 (0.61, 0.79) 

 30 0.64 0.76 (0.67, 0.85) 

 8 10 0.49 0.74 (0.65, 0.83) 

 20 0.48 0.77 (0.69, 0.85) 

 30 0.47 0.67 (0.58, 0.76) 

 12 10 0.41 0.74 (0.65, 0.83) 

 20 0.40 0.75 (0.69, 0.77) 

 30 0.40 0.76 (0.54, 0.79) 

20 4 10 0.44 0.72 (0.63, 0.81) 

 20 0.42 0.73 (0.64, 0.82) 

 30 0.42 0.72 (0.63, 0.81) 

 8 10 0.32 0.79 (0.72, 0.88) 

 20 0.31 0.71 (0.62, 0.80) 

 30 0.31 0.76 (0.74, 0.76) 

 12 10 0.27 0.71 (0.62, 0.80) 

 20 0.26 0.85 (0.78, 0.92) 

 30 0.26 0.73 (0.64, 0.82) 

30 4 10 0.35 0.76 (0.63, 0.81) 

 20 0.34 0.76 (0.75, 0.78) 

 30 0.33 0.72 (0.63, 0.81) 

 8 10 0.26 0.73 (0.64, 0.82) 

 20 0.25 0.77 (0.61, 0.79) 

 30 0.25 0.73 (0.64, 0.82) 

 12 10 0.22 0.79 (0.71, 0.87) 

 20 0.21 0.72 (0.63, 0.81) 

 30 0.21 0.77 (0.74, 0.90) 

2
c =0.39, 2

e=0.01, 2
p =0.60, =0.75,      =0.5 
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Ta : S tio
on—Continuous Outcome 

ble B.2 imula n Results for Case 2 
Randomize at Level Two without Interacti

c p n d  95% CI of   

10 4 10 0.58 0.72 (0.68, 0.76) 

 20 0.56 0.70 (0.66, 0.77) 

 30 0.55 0.71 (0.67, 0.75) 

 8 10 0.40 0.75 (0.71, 0.78) 

 20 0.39 0.73 (0.72, 0.79) 

 30 0.38 0.73 (0.69, 0.76) 

 12 10 0.33 0.74 (0.71, 0.81) 

 20 0.31 0.78 (0.75, 0.80) 

 30 0.31 0.70 (0.65, 0.75) 

20 4 10 0.40 0.79 (0.76, 0.81) 

 20 0.39 0.78 (0.75, 0.80) 

 30 0.38 0.74 (0.70, 0.77) 

 8 10 0.28 0.77 (0.74, 0.79) 

 20 0.27 0.76 (0.72, 0.79) 

 30 0.27 0.76 (0.72, 0.79) 

 12 10 0.23 0.76 (0.72, 0.79) 

 20 0.22 0.75 (0.67, 0.82) 

 30 0.22 0.74 (0.69, 0.82) 

30 4 10 0.33 0.73 (0.69, 0.76) 

 20 0.32 0.76 (0.72, 0.79) 

 30 0.31 0.78 (0.75, 0.80) 

 8 10 0.23 0.78 (0.75, 0.80) 

 20 0.22 0.73 (0.69, 0.76) 

 30 0.22 0.75 (0.72, 0.82) 

 12 10 0.19 0.70 (0.65, 0.72) 

 20 0.18 0.73 (0.69, 0.76) 

 30 0.18 0.73 (0.69, 0.76) 

2
c =0.39, 2

e=0.01, 2
p =0.60, =0.75,      =0.5 
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Table B.3: Simulation Resu or Cas
Randomize at Level Tw ith In  

lts f e 3 
o w teraction—Continuous Outcome

c p n d  95% CI of   

10 4 10 0.69 0.70 (0.65, 0.77) 

 20 0.67 0.74 (0.74, 0.79) 

 30 0.67 0.75 (0.71, 0.76) 

 8 10 0.53 0.66 (0.61, 0.78) 

 20 0.52 0.71 (0.66, 0.76) 

 30 0.52 0.76 (0.71, 0.76) 

 12 10 0.47 0.76 (0.71, 0.76) 

 20 0.46 0.69 (0.64, 0.76) 

 30 0.45 0.68 (0.63, 0.80) 

20 4 10 0.46 0.70 (0.65, 0.77) 

 20 0.45 0.70 (0.65, 0.77) 

 30 0.44 0.72 (0.67, 0.75) 

 8 10 0.35 0.75 (0.70, 0.75) 

 20 0.35 0.74 (0.69, 0.76) 

 30 0.34 0.65 (0.60, 0.77) 

 12 10 0.31 0.71 (0.66, 0.76) 

 20 0.30 0.74 (0.69, 0.75) 

 30 0.30 0.77 (0.72, 0.79) 

30 4 10 0.37 0.74 (0.69, 0.74) 

 20 0.36 0.73 (0.71, 0.76) 

 30 0.35 0.74 (0.71, 0.76) 

 8 10 0.28 0.73 (0.72, 0.78) 

 20 0.28 0.74 (0.69, 0.75) 

 30 0.27 0.68 (0.63, 0.77) 

 12 10 0.25 0.73 (0.72, 0.79) 

 20 0.24 0.74 (0.73, 0.78) 

 30 0.24 0.77 (0.74, 0.79) 

2
c =0.39, 2

e =0.55, 2
ct=0.01, 2

p =0.05, =0.75,       =0.5 
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Table B.4: Simulation Resu or Cas
Randomize at Level One wi ut Inte n—Con us Out

lts f e 4 
tho ractio tinuo come 

c p n d  95% CI of   

10 4 10 0.20 0.77 (0.76, 0.78) 

 20 0.14 0.82 (0.7, 0.82) 

 30 0.12 0.71 (0.69, 0.75) 

 8 10 0.14 0.76 (0.74, 0.78) 

 20 0.10 0.78 (0.74, 0.78) 

 30 0.08 0.67 (0.64, 0.84) 

 12 10 0.12 0.77 (0.75, 0.78) 

 20 0.08 0.74 (0.72, 0.76) 

 30 0.07 0.78 (0.75, 0.79) 

20 4 10 0.14 0.76 (0.74, 0.78) 

 20 0.10 0.76 (0.74, 0.78) 

 30 0.08 0.74 (0.72, 0.76) 

 8 10 0.10 0.74 (0.72, 0.76) 

 20 0.07 0.73 (0.71, 0.76) 

 30 0.06 0.73 (0.71, 0.76) 

 12 10 0.08 0.72 (0.68, 0.75) 

 20 0.06 0.74 (0.72, 0.76) 

 30 0.05 0.77 (0.75, 0.78) 

30 4 10 0.12 0.76 (0.73, 0.77) 

 20 0.08 0.77 (0.76, 0.78) 

 30 0.07 0.73 (0.71, 0.76) 

 8 10 0.08 0.75 (0.72, 0.77) 

 20 0.06 0.76 (0.74, 0.78) 

 30 0.05 0.73 (0.70, 0.76) 

 12 10 0.07 0.78 (0.75, 0.79) 

 20 0.05 0.76 (0.72, 0.81) 

 30 0.04 0.74 (0.72, 0.81) 

2
c =0.39, 2

e=0.01, 2
p =0.60, =0.75,      =0.5 
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Table B.5: Simulation Resu or Cas
Randomize at Level One wi reatm  Level Th Contin ome 

lts f e 5 
th T ent × ree— uous Outc

c p n d  95% CI of 

10 4 10 0.37 0.75 (0.73, 0.77)

 20 0.34 0.69 (0.67, 0.79)

 30 0.32 0.73 (0.72, 0.78)

 8 10 0.34 0.72 (0.70, 0.74)

 20 0.32 0.71 (0.70, 0.78)

 30 0.31 0.75 (0.73, 0.77)

 12 10 0.32 0.70 (0.69, 0.76)

 20 0.31 0.76 (0.71, 0.86)

 30 0.31 0.74 (0.72, 0.79)

20 4 10 0.25 0.72 (0.71, 0.79)

 20 0.22 0.71 (0.71, 0.8)

 30 0.22 0.70 (0.64, 0.78)

 8 10 0.22 0.74 (0.74, 0.78)

 20 0.21 0.75 (0.73, 0.77)

 30 0.21 0.74 (0.72, 0.76)

 12 10 0.22 0.75 (0.73, 0.81)

 20 0.21 0.71 (0.70, 0.78)

 30 0.20 0.73 (0.71, 0.76)

30 4 10 0.20 0.72 (0.68, 0.75)

 20 0.18 0.75 (0.74, 0.78)

 30 0.17 0.71 (0.69, 0.82)

 8 10 0.18 0.68 (0.66, 0.75)

 20 0.17 0.72 (0.68, 0.75)

 30 0.17 0.73 (0.71, 0.77)

 12 10 0.17 0.71 (0.70, 0.80)

 20 0.17 0.70 (0.70, 0.79)

 30 0.16 0.74 (0.72, 0.76)

2
c =0.39, 2

e
2
ct=0.01, 2

p =0.55, =0.05, =0.75,   =0.5  
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Table B.6: Simulation Results for Case 6 
Randomize at Level One with Treatment × Level Two—Con ous Outtinu come 

c p n d  95% CI of 

10 4 10 0.23 0.75 (0.61, 0.77)

 20 0.17 0.69 (0.65, 0.79)

 30 0 15. 0.73 (0.69, 0.77)

 8 10 0.16 0.74 (0.71, 0.76)

 20 0.12 0.74 (0.71, 0.77)

 30 0.10 0.72 (0.67, 0.75)

 12 10 0.13 0.70 (0.69, 0.77)

 20 0.10 0.74 (0.72, 0.76)

 30 0.08 0.72 (0.71, 0.78)

20 4 10 0.16 0.77 (0.75, 0.77)

 20 0.12 0.70 (0.64, 0.79)

 30 0.10 0.74 (0.73, 0.83)

 8 10 0.11 0.71 (0.68, 0.75)

 20 0.08 0.74 (0.71, 0.76)

 30 0.07 0.73 (0.72, 0.77)

 12 10 0.09 0.74 (0.71, 0.75)

 20 0.07 0.69 (0.68, 0.77)

 30 0.06 0.74 (0.71, 0.80)

30 4 10 0.13 0.71 (0.70, 0.76)

 20 0.10 0.72 (0.71, 0.77)

 30 0.08 0.73 (0.73, 0.79)

 8 10 0.09 0.75 (0.71, 0.77)

 20 0.07 0.72 (0.72, 0.77)

 30 0.06 0.71 (0.71, 0.78)

 12 10 0.07 0.74 (0.71, 0.77)

 20 0.06 0.70 (0.70, 0.77)

 30 0.05 0.75 (0.75, 0.79)

2
c =0.39, 2

e=0.01, 2
p

2
pt=0.55, =0.02, =0.75,   =0.5  
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Table B.7: Simulation Results for Case 7 
Randomize at Level Three—Bina  Outcomry e 

c p n d  95% CI of   

10 4 10 0.16 0.74 (0.73, 0.76) 

 20 0.14 0.77 (0.76, 0.86) 

 30 0.13 0.72 (0.71, 0.74) 

 8 10 0.12 0.72 (0.70, 0.73) 

 20 0.11 0.71 (0.70, 0.80) 

 30 0.10 0.74 (0.73, 0.79) 

 12 10 0.10 0.75 (0.74, 0.76) 

 20 0.09 0.71 (0.70, 0.83) 

 30 0.09 0.75 (0.74, 0.97) 

20 4 10 0.11 0.74 (0.71, 0.77) 

 20 0.10 0.70 (0.69, 0.80) 

 30 0.09 0.78 (0.77, 0.85) 

 8 10 0.08 0.75 (0.71, 0.76) 

 20 0.07 0.80 (0.79, 0.91) 

 30 0.07 0.76 (0.75, 0.84) 

 12 10 0.07 0.74 (0.72, 0.92) 

 20 0.06 0.75 (0.73, 0.77) 

 30 0.06 0.84 (0.74, 0.93) 

30 4 10 0.09 0.75 (0.73, 0.82) 

 20 0.08 0.74 (0.71, 0.84) 

 30 0.07 0.76 (0.72, 0.80) 

 8 10 0.07 0.71 (0.68, 0.85) 

 20 0.06 0.73 (0.71, 0.75) 

 30 0.06 0.84 (0.74, 0.94) 

 12 10 0.06 0.77 (0.73, 0.81) 

 20 0.05 0.76 (0.75, 0.85) 

 30 0.05 0.79 (0.76, 0.81) 

2
c =0.01, 2

p =0.39, c =0.70, =0.75,      =0.5 
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Table B.8: Simulation Resu or Cas
Randomize at Level Two w ut Inte on—Bina utcome

lts f e 8 
itho racti ry O  

c p n d  95% CI of   

10 4 10 0.14 0.74 (0.71, 0.76) 

 20 0.12 0.73 (0.7, 0.75) 

 30 0.12 0.73 (0.69, 0.75) 

 8 10 0.10 0.70 (0.66, 0.72) 

 20 0.09 0.76 (0.73, 0.79) 

 30 0.09 0.73 (0.67, 0.78) 

 12 10 0.09 0.76 (0.73, 0.78) 

 20 0.08 0.78 (0.74, 0.82) 

 30 0.07 0.75 (0.73, 0.87) 

20 4 10 0.11 0.74 (0.70, 0.83) 

 20 0.09 0.76 (0.70, 0.83) 

 30 0.09 0.69 (0.65, 0.72) 

 8 10 0.08 0.78 (0.75, 0.80) 

 20 0.07 0.66 (0.46, 0.68) 

 30 0.06 0.68 (0.66, 0.76) 

 12 10 0.06 0.72 (0.65, 0.79) 

 20 0.05 0.73 (0.67, 0.78) 

 30 0.05 0.79 (0.75, 0.82) 

30 4 10 0.09 0.73 (0.70, 0.75) 

 20 0.08 0.73 (0.68, 0.76) 

 30 0.07 0.75 (0.60, 0.77) 

 8 10 0.06 0.71 (0.55, 0.79) 

 20 0.05 0.73 (0.67, 0.77) 

 30 0.05 0.85 (0.81, 0.88) 

 12 10 0.05 0.67 (0.60, 0.73) 

 20 0.04 0.75 (0.70, 0.79) 

 30 0.04 0.74 (0.57, 0.76) 

2
c =0.01, 2

p =0.39, c =0.70, =0.75,      =0.5 
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Table B.9: Simulation Resu or Cas
Randomize at Level Two w y Outcome 

lts f e 9 
ith Interaction—Binar

c p n d  95% CI of   

10 4 10 0.16 0.72 (0.71, 0.73) 

 20 0.14 0.69 (0.67, 0.70) 

 30 0.13 0.75 (0.74, 0.76) 

 8 10 0.12 0.74 (0.72, 0.76) 

 20 0.11 0.72 (0.70, 0.75) 

 30 0.11 0.76 (0.72, 0.78) 

 12 10 0.11 0.73 (0.72, 0.77) 

 20 0.10 0.74 (0.68, 0.78) 

 30 0.09 0.75 (0.66, 0.78) 

20 4 10 0.11 0.77 (0.74, 0.78) 

 20 0.10 0.76 (0.74, 0.78) 

 30 0.09 0.70 (0.70, 0.76) 

 8 10 0.09 0.73 (0.71, 0.82) 

 20 0.08 0.78 (0.72, 0.83) 

 30 0.07 0.75 (0.74, 0.84) 

 12 10 0.08 0.74 (0.68, 0.78) 

 20 0.07 0.74 (0.68, 0.79) 

 30 0.07 0.75 (0.65, 0.82) 

30 4 10 0.09 0.75 (0.69, 0.76) 

 20 0.08 0.70 (0.70, 0.80) 

 30 0.08 0.74 (0.71, 0.87) 

 8 10 0.07 0.73 (0.65, 0.75) 

 20 0.06 0.71 (0.75, 0.86) 

 30 0.06 0.73 (0.65, 0.81) 

 12 10 0.06 0.70 (0.61, 0.78) 

 20 0.06 0.65 (0.57, 0.73) 

 30 0.05 0.69 (0.51, 0.86) 

2
c =0.70, 2

ct=0.01, 2
p =0.39, c =0.05, =0.75,       =0.5 
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Table B.10: Simulation Results for Case 10 
Randomize at Level One wi ut Inte n—Bina utcometho ractio ry O  

c p n d  95% CI of   

10 4 10 0.11 0.76 (0.68, 0.77) 

 20 0.08 0.75 (0.72, 0.82) 

 30 0.07 0.77 (0.76, 0.92) 

 8 10 0.08 0.74 (0.73, 0.89) 

 20 0.06 0.74 (0.73, 0.90) 

 30 0.05 0.77 (0.75, 0.95) 

 12 10 0.07 0.73 (0.71, 0.73) 

 20 0.05 0.77 (0.61, 0.80) 

 30 0.04 0.72 (0.69, 0.75) 

20 4 10 0.08 0.79 (0.67, 0.86) 

 20 0.06 0.80 (0.74, 0.79) 

 30 0.05 0.73 (0.69, 0.82) 

 8 10 0.06 0.68 (0.63, 0.78) 

 20 0.04 0.74 (0.64, 0.88) 

 30 0.04 0.76 (0.71, 0.77) 

 12 10 0.05 0.76 (0.74, 0.77) 

 20 0.04 0.78 (0.74, 0.79) 

 30 0.03 0.73 (0.67, 0.84) 

30 4 10 0.07 0.78 (0.65, 0.81) 

 20 0.05 0.75 (0.73, 0.86) 

 30 0.04 0.79 (0.68, 0.85) 

 8 10 0.05 0.72 (0.67, 0.82) 

 20 0.04 0.75 (0.70, 0.83) 

 30 0.03 0.76 (0.72, 0.77) 

 12 10 0.04 0.79 (0.65, 0.89) 

 20 0.03 0.79 (0.65, 0.89) 

 30 0.02 0.74 (0.69, 0.84) 

2
c =0.01, 2

p =0.39, c =0.70, =0.75,      =0.5 
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Table B.11: Simulation Results for Case 11 
Randomize at Level One wi reatm  Level Th Binaryth T ent × ree—  Outcome 

c p n d  95% CI of 

10 4 10 0.13 0.73 (0.72, 0.77)

 20 0.10 0.73 (0.73, 0.74)

 30 0.09 0.75 (0.75, 0.77)

 8 10 0.10 0.73 (0.73, 0.84)

 20 0.09 0.71 (0.70, 0.83)

 30 0.08 0.74 (0.71, 0.82)

 12 10 0.09 0.73 (0.71, 0.77)

 20 0.08 0.74 (0.73, 0.79)

 30 0.07 0.70 (0.69, 0.78)

20 4 10 0.09 0.72 (0.70, 0.87)

 20 0.07 0.71 (0.69, 0.75)

 30 0.06 0.68 (0.65, 0.77)

 8 10 0.07 0.77 (0.75, 0.80)

 20 0.06 0.77 (0.72, 0.87)

 30 0.05 0.76 (0.68, 0.85)

 12 10 0.06 0.70 (0.69, 0.76)

 20 0.05 0.76 (0.69, 0.83)

 30 0.05 0.73 (0.68, 0.87)

30 4 10 0.08 0.74 (0.73, 0.76)

 20 0.06 0.71 (0.69, 0.86)

 30 0.05 0.74 (0.74, 0.75)

 8 10 0.06 0.70 (0.65, 0.77)

 20 0.05 0.73 (0.71, 0.87)

 30 0.04 0.75 (0.72, 0.86)

 12 10 0.05 0.74 (0.70, 0.80)

 20 0.04 0.66 (0.61, 0.87)

 30 0.04 0.75 (0.74, 0.77)

2
c =0.39, 2

ct=0.01, 2
p =0.05, =0.70, =0.75,   =0.5   c
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Table B 2: Simulation Results r Case 
Randomize at Level One with Treatment × Level Two—Binary Outc

.1  fo 12 
ome 

c p n d  95% CI of 

10 4 10 0.12 0.76 (0.72, 0.76)

 20 0.09 0.73 (0.73, 0.76)

 30 0.08 0.75 (0.75, 0.77)

 8 10 0.09 0.74 (0.73, 0.77)

 20 0.07 0.71 (0.70, 0.73)

 30 0.06 0.76 (0.71, 0.79)

 12 10 0.08 0.74 (0.71, 0.77)

 20 0.06 0.75 (0.73, 0.79)

 30 0.05 0.70 (0.69, 0.78)

20 4 10 0.09 0.72 (0.70, 0.87)

 20 0.06 0.75 (0.69, 0.76)

 30 0.05 0.73 (0.71, 0.78)

 8 10 0.06 0.70 (0.70, 0.79)

 20 0.05 0.73 (0.71, 0.77)

 30 0.04 0.74 (0.71, 0.76)

 12 10 0.05 0.70 (0.69, 0.76)

 20 0.04 0.76 (0.72, 0.78)

 30 0.03 0.70 (0.69, 0.77)

30 4 10 0.07 0.77 (0.73, 0.78)

 20 0.05 0.72 (0.70, 0.81)

 30 0.04 0.74 (0.74, 0.75)

 8 10 0.05 0.76 (0.75, 0.77)

 20 0.04 0.73 (0.71, 0.77)

 30 0.03 0.75 (0.72, 0.76)

 12 10 0.04 0.74 (0.70, 0.80)

 20 0.03 0.70 (0.70, 0.78)

 30 0.03 0.74 (0.73, 0.77)

2
c =0.01, 2

p =0.39, 2
pt =0.02, =0.70, =0.75,   =0.5  c 
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