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Abstract

Over the past few decades, Cluster Randomized Trials (CRT) have become a design of
choice in many research areas. One of the most critical issues in planning a CRT is to ensure that
the study design is sensitive enough to capture the intervention effect. The assessment of power
and sample size in such studies is often faced with many challenges due to several
methodological difficulties.

While studies on power and sample size for cluster designs with one and two levels are
abundant, the evaluation of required sample size for three-level designs has been generally
overlooked. First, the nesting effect introduces more than one intracluster correlation into the
model. Second, the variance structure of the estimated treatment difference is more complicated.
Third, sample size results required for several levels are needed.

In this work, we developed sample size and power formulas for the three-level data
structures based on the generalized linear mixed model approach. We derived explicit and
general power and sample size equations for detecting a hypothesized effect on continuous
Gaussian outcomes and binary outcomes. To confirm the accuracy of the formulas, we
conducted several simulation studies and compared the results. To establish a connection
between the theoretical formulas and their applications, we developed a SAS user-interface
macro that allowed the researchers to estimate sample size for a three-level design for different
scenarios. These scenarios depend on which randomization level is assigned and whether or not

there is an interaction effect.
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Chapter |

Introduction

Over the last few decades, randomized controlled trials have become the design of choice
in medical sciences and disease prevention research for the evaluation of new medical
interventions. In such trials, an important issue in the design stage is the unit of randomization.
This unit could be the individual patients, the physicians, a group of physicians within a practice,
or several practices within a specific geographic area.

In some situations, randomization at the individual level has advantages because it
minimizes the risk of covariate imbalances. For example, different practices tend to have
different types of patients with their own characteristics. Furthermore, trials that randomize
individual patients can use practices as blocks to reduce the dependency of the outcomes on
practice level discrepancies, such as the degree of adherence to a study protocol or the difference
in clinical skills found amongst the providers.

In other situations, however, the interventions are randomized not to individuals but to
intact groups or clusters, such as medical practices, worksites, families, or communities. These
studies, referred to as Cluster Randomized Trials (CRT), are being used increasingly because of
many reasons. First, randomizing at cluster level might be the only feasible method of
conducting a trial in certain fields. Examples include studies where interventions are targeted at a
whole practice (the implementation of a new Electronic Health Record system) or a whole
community (introduction of new water and sanitation schemes). Second, randomizing by cluster

can be used to reduce the likelihood of contamination, which is likely to happen when
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individuals receive an intervention within the same group share information with each other. For
example, patients in an intervention group who are being educated on colon cancer screenings
might talk to the control-allocated patients visiting the same practice, who in turn will ask for the
screening themselves or might respond differently on the outcome measures due to this
influence. Third, CRT is justified when the efficacy is established at individual level, but the
primary goal is to measure the effectiveness when an intervention is applied at the cluster level,
or when the desire is to capture the mass effect of an intervention on a large proportion of group
members (Murray, 1998).

One of the most critical issues in designing a cluster randomized experiment is to ensure
that the study design is sensitive enough to capture the effect of the intervention. This important
task involves making a decision about power and sample sizes. Good study design requires the
planning of sample sizes so that the test for the intervention effect has adequate statistical power
to detect the smallest difference that is of scientific or practical interest. Insufficient sample sizes
can lead to inadequate sensitivity, whereas excessive sample sizes can be a waste of time and
valuable resources.

In the design stage of a cluster randomized study, researchers are required to answer three
fundamental questions: (1) What are the minimum numbers of subjects in each cluster and the
number of clusters that are required in order to attain a specified power for testing the treatment
effect? (2) Is it better to investigate more clusters with fewer subjects in each cluster, or fewer
clusters with more subjects in each cluster? (3) If there is a budget constraint, what is the
optimum allocation of the sample sizes which will still allow for the desired power? To date,

there are no definite guidelines that simultaneously answer the above questions.
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The impact of randomization by cluster on the required sample sizes can be quite
substantial. Campbell et al. (2004) provided a simple example to illustrate this impact. In a study
to evaluate the effectiveness of educational training on asthma management for general
practitioners, the intention of the design was to detect an increase in appropriate management of
asthma patients from 40% to 60%, at a statistical power of 80% and significance level of 5%.
From the researchers’ calculation, an individual-based sample size formula yielded a total
sample size of 194 patients. However, when appropriate adjustment for clustering by general
practice was taken into account, even with a small clustering effect, the true sample size
requirement was 400. This sample size is more than twice the sample size computed under the
assumption of no clustering effect, a significant difference that cannot be ignored.

The assessment of power and sample size in studies involving clustering is faced with
many challenges. First, the cluster effect must be taken into account. While standard sample size
calculations operate under the assumption of independence between individuals, this assumption
is violated in CRT. Second, in cluster studies, there is more than one component of variation: the
variation among individuals within clusters, and the variation in the outcomes between clusters.
It is essential that both sources of variation are taken into account in the design stage. Third,
planning for a CRT involves more than just one sample size. The number of data units at each
level required to reach a target level of statistical power must be determined. Furthermore, each
sample size at a different level will affect the power differently. For example, in the study
evaluating the appropriate management of asthma patients, the power of the test used to detect
the intervention effect depends not only on the sample size of the patients within each practice,
but also on the number of practices involved as well as the ratio of number of patients to number

of practices.
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Complicating matters further, the difficulty in computation of power in CRT arises from
the complexity of the models. Much of the work on power and sample size requirements for
cluster data is developed from the idea of multistage sampling, which creates a hierarchically
nested structure with sample from one level nested within sample at another level. However, a
sample taken from m clusters each of size n is not a simple random sample of mn individuals,
and the sampling distribution of statistics on such clustered samples is not the same as that based
on simple random samples of the same size.

Different nesting structures can be seen in practice. One common structure is the two-
level design in which individual subjects are nested within clusters. For example, in trials where
different interventions to improve quality of care are compared, the intervention is implemented
at the level of healthcare professionals (e.g., clinicians, physicians, caregivers), while the effects
are measured at the patient level. In such trials, patients are nested within healthcare
professionals, creating the two-level nesting effects.

During the last two decades, the design and analysis techniques for CRT with two levels
have been fairly well-developed in the literature (Donner and Klar, 2000; Murray, 1998). In
addition, statistical software for the two-level design is currently available; some are free to the
public (Hedges and Hedberg, 2007; Raudenbush & Liu, 2000; Snijders and Bosker, 1993).
However, most work on power analysis and sample size determination for CRT has only
emphasized two-level designs, and some only handled one particular type of outcome variable.

As a more recent development, randomized trials with three-level designs have become a
common application in many different research areas, such as psychology, education, and
medical sciences. Examples of three-level designs are abundant in the literature. Three of them

will be listed here for illustration purpose.
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In the first example, a cluster randomized controlled trial was designed to evaluate a
school-based prevention program on tobacco and drug use. In this study, 170 schools from 9
centers from seven countries (Austria, Belgium, Germany, Greece, Italy, Spain, Sweden) were
randomized to one of three arms of an intervention (basic curriculum, basic with peer
involvement, and basic with parent involvement) or to a control group. Twenty seven schools
dropped out after the allocation to the study arm, leaving 143 schools and 345 classes actually
included in the study. The number of schools varied between centers, as did the number of
classes. Of 7409 eligible students, 7079 (95.7%) participated in the baseline survey. The
evaluation is based on a comprehensive social influence approach, and was delivered during the
school year 2004-2005 to a population of 12 to 14-year-old students attending junior high
school. An anonymous questionnaire administered before and after the intervention was used to
track behavioral and attitudinal changes. This cluster randomized trial assumed a three level
structure in that students, classes, and school served as the first, second, and third level in the
hierarchy, respectively. Randomization took place at the third level (schools) (Faggiano et al.,
2007).

In the second example, researchers in Spain conducted a cluster randomized study to
assess the effectiveness of a new “Experimental Program for Physical Activity Promotion”
(PEPAF) in increasing physical activity in inactive patients. PEPAF is a program designed to
increase physical activity in patients who did not meet the recommended aerobic physical
activity levels. Physicians who participated in PEPAF provided patients with advice on using
health promotion websites and health educational materials. In addition, a 15 minute consultation
on individualized physical activity plan was offered to patients who committed to increase their

activity level. Control group physicians delivered standard care and delayed any new systematic
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intervention related to physical activity until the end of the study, unless the reason for
consultation or the patients' health problems were directly related to inactivity. Recruitment
involved inviting all 15 research groups of the Health Promotion Primary Care Research
Network to participate, with a collaboration of at least 4 physicians per center as the requirement
for eligibility. Seventy family physicians from 13 primary care centers belonging to 8 research
groups agreed to participate. After signing a collaboration consent form, all 70 physicians were
randomized to either the PEPAF or usual care (control) arm of the trial in a 1:1 ratio. Twelve
physicians dropped out before the start of the study because of technical complaints, and 2
physicians failed to participate. Finally, 56 physicians (29 allocated to the PEPAF arm and 27 to
the control arm) performed the study at 13 primary care centers. Each family physician recruited
150 patients aged 20 to 80 years, who did not meet the recommended aerobic physical activity
level. Physicians assessed the patients' physical activity with assistance of a computerized
algorithm. The study was managed online using Web-based software designed to help physicians
follow the research protocol and control the recruitment process of each eligible patient. This
study is an example of a three-level design in which patients (level one) are nested within
physicians (level two), and physicians are nested within centers (level three). Randomization
took place at the second level (physicians) (Grandes et al., 2009).

In the third example, a randomized, controlled study was conducted by the Virginia
Ambulatory Care Outcomes Research Network to compare the effect of an interactive web-based
personalized healthcare record and the usual delivery of preventive services. Eight primary care
practices in Northern Virginia were recruited. Practice size ranged from 2 to 35 clinicians. Of
the 80,000 active study site patients, 4,500 active patients were randomly selected for study

participation. The study sample was then randomly assigned to intervention (n=2,225) and
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control (n=2,225) groups. Patients in the intervention group received up to three mailed requests
from their clinician inviting them to use myPreventiveCare, a web-based personal health record
that provides patients personalized prevention plans and individualized educational material
about preventive services and chronic disease management. Control patients received “usual”
preventive care and were not informed of myPreventiveCare. Outcome measurements included
the percentage of intervention patients who visited myPreventiveCare, percentage of patients
who were up-to-date with indicated preventive service, and an aggregated percentage of
preventive services that were up to date. This study can be considered an example of a three-
level design in which patients nested within physicians, and physicians nested within practices.
Randomization took place at the first level (patients) (Krist et al., 2010).

The three examples above show that analyses for nested cluster data do not always
consist of two levels. It is not uncommon that a three-level design is encountered in practice.
Hence, it is important that the three-level structure is taken into account right at the design stage
of the experiment.

In this work, we develop sample size formulas for the three-level data structures based on
the generalized linear mixed model approach. We derive explicit and general power functions
and sample size equations for detecting a hypothesized effect on continuous Gaussian outcomes
and binary outcomes. In addition, we present a SAS macro that will allow the users to estimate
sample size for three-level data structures in different scenarios depending on which level
randomization is assigned and whether the interaction exists.

We begin by providing some background and significance of this work in Chapter 2.
Chapter 3 reviews basic statistical properties of cluster data and the general concepts behind

power and sample size computation. Chapter 4 derives the formulas for sample size and power

www.manaraa.com



for continuous Gaussian outcome. Chapter 5 derives the formulas for sample size and power for
binary outcome. Chapter 6 presents a simulation study to verify the accuracy of the proposed
formulas. Chapter 7 explains the development of a SAS macro to compute power and sample
size, together with some practical examples to illustrate the use of the macro. Finally, Chapter 8

includes a discussion of the current and future work.
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Chapter 2

Background and Significance

Over the past three decades, the application of cluster randomized trials has led to a large
body of methodological work and a growing literature that cuts across several areas of research.
It has been well known that standard methods for controlled trials randomized at individual level
cannot be applied directly to trials randomized at the cluster level. Thus, increased attention has
been developed toward the design and analysis of CRT because of their special statistical
characteristics.

Despite the large amount of literature and discussions dedicated to the topic of CRT, the
selection of proper statistical approaches to determine sample size still remains a challenge for
researchers in multiple disciplines. The literature on sample size computation for two-level data
can be found consistently during the last two decades, and some publications on sample size for
three-level design also appeared recently. It is important to take a general look at the previous
work and evaluate the impact of recent developments in this topic.

This chapter provides a detailed review of several main issues in the development of the
designs and analyses of CRT in general, and of the sample size estimation for multilevel data in
particular. The chapter is structured as follows: Section 2.1 gives a general overview of the
established literature in CRT. Section 2.2 presents issues concerning sample size determination
and power assessment. Section 2.3 reviews statistical software that compute sample sizes in

CRT. Finally, Section 2.4 discusses the significance and motivation behind this work.
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2.1 Review of Statistical Issues in Cluster Randomized Trials

Although the concept of a cluster randomized study dates decades ago when Kish (1965)
introduced the technique of cluster-sampling design in survey sampling theory, increased interest
in its statistical features was brought to the general research community by Cornfield (1978). In
his work, Cornfield pointed out that two primary concerns needed to be addressed in experiments
where groups (or clusters) of subjects are randomized. First, the variance between clusters is the
dominant factor in the variance of cluster means. Second, there will be fewer degrees of freedom
to estimate the between cluster variance than to estimate the within cluster variance.

Over the years, issues involved in the design and analyses of clustered data have been
discussed extensively by several researchers; examples include Klar and Donner (2001), Murray
et al. (2008), and Dedrick et al. (2009). Based on the review of methodological and technical
literature, three broad topics set the stage for discussion in the design and analysis of clustered
data: (1) Issues in the experimental designs, (2) Issues in the selection of appropriate analytic
models, and (3) Issues in the assessment of power and sample size determination.

We will discuss the first two items in this section. The last item, the review on power and
sample size estimation, will be explored separately in the next two sections because it is the

focus of this work.

2.1.1 Issues in Experimental Designs

A number of experimental designs have been specifically proposed for cluster
randomized trials. The three most popular designs are matched-pair, stratified, and completely
randomized trials. The last form of design is usually considered with no pre-stratification or

matching on the baseline characteristics.
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Freedman et al. (1990) explored the gain in efficiency obtained from the matched-pair
design by estimating the relative efficiency of an unmatched versus a pair-matched design.
Defining the relative efficiency as 1 minus the ratio between the variance of matched design over
the variance of unmatched design, the authors showed that the matched design can be more
efficient compared to unmatched design when high correlation between the pairs was created
from the effect of matching.

One commonly adopted matching factor is cluster size where clusters are grouped into
categories such as small, medium, or large. As Donner and Klar (2000) suggested, this method is
appealing because it helps to avoid the imbalance in the number of subjects per treatment group.
In addition, the cluster size itself might associate with factors associated with other baseline
variables, such as socioeconomic status or access to healthcare resources.

The stratified design can be viewed as an extension of matched-pair design in which
more than one cluster is randomly allocated within strata to each of the treatment arms. This
design is preferred over the matched-pair design in situations when it is difficult to create close
matches that correspond to important estimates. In addition, stratified design is more appealing
because its allocation scheme is less rigid since it reduces many of the analytic limitations
associated with matched-pair design ((Donner and Klar, 2000). In general, the choice between
matching and stratification depends on the number of clusters, the accuracy of the matches, and
the analytic plan (Murray, 1998).

A completely randomized design with no pre-stratification or matching is perhaps the
most commonly adopted design in practice. In any case, for all forms of designs the issue arises
in the choice of which level randomization is executed. Zucker (1990) discussed the difference in

the context of two-level design, in which subjects are nested within clusters. The treatments can

www.manaraa.com



12

be assigned in two different ways. In the first scheme, the assignment of the treatments is done
on the individual basis within each cluster. In the literature, this is known as subject-level
randomization. The second option is to randomly assign the clusters to different treatment arms.
This is known as cluster-level randomization where the subjects are nested in clusters, which in

turn are nested in the treatment groups.

2.1.2 Issues in the Selection of Appropriate Analysis Models

To date, there is no single agree-upon method to analyze data from CRT. According to
Murray (1998), one major source of errors in the analysis of clustered data is model mis-
specification. The selection of proper statistical approaches in clustered design is difficult
because the usual assumptions under familiar methods are not met. Methods involving general
linear models or generalized linear models are inappropriate for the analysis of clustered data
because they only allow for one source of random variation, usually by ignoring the cluster
effect, or treating the cluster as a fixed effect in the model. Zucker’s (1990) pointed out the
pitfall in implementing such strategies by comparing what he defined as the fixed effect model
(cluster is treated as fixed effect) and the mixed effect model (cluster is treated as random effect).
By looking at the F-test, Zucker concluded that ignoring the cluster effect can inflate the Type |
error and the level of inflation can be quite substantial when one mistakenly treats the clusters as
a fixed effect.

One strategy that has been recommended for clustered data is the use of a multilevel
model, also known as a hierarchical linear model, or random coefficient model. This type of
model is common in educational and social research, originally applied for longitudinal data and

growth data. In the last decade, this technique has been used in the context of CRT because of
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the hierarchical structure of the data. In essence, multilevel modeling provides for components of
variance for cluster and individual slopes as well as intercepts. These models can be specified by
using equations for each level or combining equations at each level into one. An introduction to
multilevel modeling was written by Raudenbush (1993). The theory and implementation of
multilevel models were discussed in depth by Hox (2002).

The strength of the multilevel model lies on its ability to incorporate both fixed and
random effects while allowing for unbalanced data and flexibility in handling missing data
(Raudenbush, 1993). However, some issues still remain controversial in the application of
multilevel models. For example, one issue involves the selection of predictors. As Dedrick et al.
(2009) pointed out in their review, variable selection in multilevel models can be complicated
and can easily become a source of error. Predictors can be selected for each level of the model,
and interactions between predictors can be included at either one single level or across all levels.
Another issue refers to the requirement of centering and the methods that accomplish this. One
approach is to center around the grand mean of the predictor variable, another approach is to
center around the cluster mean, or around a theoretically meaningful value. While the use of
centering was not explicitly stated in many research studies, different methods have different
implications for interpreting the parameter estimates (Raudenbush and Bryk, 2002).

Another technique to analyze CRT data involves the use of permutation tests. This
method was first discussed by Gail et al. (1996) and was reviewed by Murray (1998). In this
approach, the distribution of all possible allocations of the clusters was examined, and the
intervention effect for each allocation is estimated under the null hypothesis. The observed
intervention effect is regarded as just one possible intervention effect among many, and the

probability of getting a more extreme result is the proportion of possible intervention effects that
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are greater than the observed effect. The benefit of a permutation test is that it does not rely on
statistical models for its validity. In their simulation work, Gail et al. reported that permutation
tests had satisfactory type | and type Il errors. However, the disadvantage of this method arises
when covariates were included in the model. In such situations, this technique requires as many
assumptions as other model-based methods (Murray, 1998).

Of all the statistical models being used to analyze cluster data, the most common one is
the mixed model ANOVA/ANCOVA approach. This method is popular not only because of its
computational simplicity, but also because of its ability to facilitate the estimations of models
with fixed effects, random effects, or both. Of course, both mixed model ANOVA and
ANCOVA are special cases of the generalized linear mixed models, which include random
effects, random coefficients, and covariance patterns models. Murray (1998) illustrated the
implementation of mixed model ANOVA/ANCOVA to analyze data collected from post-test
only CRT, pre-test-post-test CRT, and CRT under both cross-sectional designs and cohort
designs. In the cases of mixed model ANCOVA, regression adjustment for covariates was used
to reduce bias and improve the precision. In their simulations, Murray and Wolfinger showed
that the mixed model ANOVA/ANCOVA with one or two time intervals has a nominal type |
error rate. They concluded that when properly executed, mixed model ANOVA/ANCOVA can
provide a valid analysis for CRT (Murray and Wolfinger, 1994).

One should keep it in mind that no matter what statistical model is used to analyze the
data, designs with more than one level will call for more complex variance structures. The
questions are how to best specify the covariance structure for the model, is there an interaction
effect, and which level varies randomly and which level is fixed. Dedrick et al. (2009) classified

the covariance parameters into three groups. The first group includes those that are assumed to
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be zero and can be ignored. The second group includes those that are not zero and are supposed
to be estimated. The third group includes those for which the researchers are unsure. When many
in-doubt variables are omitted, researchers are faced with the risk of biased results and incorrect
conclusions. When too many questionable variance parameters are included, the model can be

come too complicated to estimate and estimation algorithms might not converge.

2.2 Review of Issues in Sample Sizes Determination

Although there is a large and growing literature on cluster randomized trials, the amount
of publications on power and sample size is found to be much less than the literature that focused
on model development and parameters interpretation. Let’s explore the reasons behind the lack
of discussion on power and sample size assessment for cluster data.

As Donner and Klar pointed out in their book (Donner and Klar, 2000), one obvious
reason that computing of sample sizes is more complicated in CRT is because the total sample
size for each level must be determined. In a simple randomized trial, power is a monotonic
function of the sample size when other factors are constant. This is not the case for clustered
data. For example, in situations with a large intracluster correlation coefficient, increasing the
number of subjects in each cluster or the total number of subjects up to a certain point may not
have a significant impact on power. In fact, several authors have discussed methods of sample
sizes and power optimization. In these methods, usually a range of sample sizes at each level are
recommended along with their corresponding estimated powers (Snijders and Bocker, 1993;
Raudenbush, 1997).

Another reason why much less research has been devoted toward sample size

determination is because the cluster design must be taken into account. In cluster trials, the usual
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standard sample size assumption is violated because data on subjects within the same cluster are
no longer independent. This level of dependency is measured and explained via the concept of
intraclass correlation coefficients (ICC), the ratio of the between cluster variability to the total
variability. However, computing the ICC is problematic due to the difficulty in estimating the
variance. Estimates of ICC values are rarely available, and not all published records of the ICC
are reliable (Hedges and Hedberg, 2007). This is understandable, however, because the
magnitude of the ICC depends largely on the study design and outcomes, the intervention, and
the covariate adjustment (Guittet et al., 2005).

A third reason why there is much less discussion on sample size and power analysis is a
misconception about the sample sizes itself, according to Donner and Klar (2000). Trials that
enroll a large number of subjects usually give an impression of sufficient power, when in fact it
may not be the case when the cluster effect is taken into consideration. For example, with a large
ICC value the information drawn from any given individual in the cluster is redundant given the
information available from other members in the same cluster. Thus, only adding more clusters
will have an effect on power in this situation (Donner and Klar, 2000).

Despite the difficulties in estimating statistical power and the required sample sizes in
cluster studies, in recent years there has been considerable effort devoted to this topic. The
resulting literature is seen in many textbooks and journals. Some main topics can be identified,
including (1) the importance of the ICC and how to estimate its value, (2) issues involving the
number of clusters and cluster size, and (3) analytical methods that provide formulas to compute

the sample sizes in different situations.
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2.2.1 The Impact of ICC on Sample Size

It is established that the ICC has a direct relationship to the estimation of sample size and
power analysis in a CRT. A number of authors have discussed this relationship (Hsieh, 1988;
Murray, 1998; Donner and Klar, 2000). In a study on a complete cluster randomized design with
normally distributed continuous outcome, Guittet et al. (2005) quantified the influence of the
ICC on the power by examining power contour graphs under different values of the ICC. The
authors concluded that underestimating the ICC can seriously under-power the trials. Together
with lower number of clusters, the desired power might not be achieved. In another study, Maas
and Hox (2005) explored the effect of the ICC on sufficient sample size and accurate estimation
of parameters. The authors advocated that the estimated parameters and standard errors are
biased downward when the cluster sizes are small (less than 30) and the ICC values are large
(ranging from 0.10 to 0.30). These findings confirm the impact of ICC on sufficient sample size
and parameters estimation, given the fact that most CRT used less than 30 clusters.

Since knowledge of the ICC is essential for power and sample size determination in
planning for a CRT, several researchers have attempted to address the issue of obtaining
reasonable values for the ICC in realistic situations. One way to obtain this information is to use
the ICC estimated by previous studies. For example, Murray et al. (2004) reported a summary of
ICC values collected from 14 articles that provided information on the ICC for health-related
outcomes. In educational research, a compilation of ICC values of academic achievement and
related covariate effects was provided by Hedges, together with an illustration of how to use
these values to compute sample sizes under hierarchical models (Hedges and Hedberg, 2007).

A reliable estimate of the ICC is certainly necessary to ensure robust sample size

calculations. Several researchers dealt with the difficulty in getting accurate estimates of the
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ICC, including methods to compute confidence intervals. One approach was presented by Feng
and Grizzle, using the bootstrap method by simulating results from studies with the sample sizes
that gave the observed estimates. The ICC computed from each simulation is substituted into the
sample size formula and the distribution of powers is provided (Feng and Grizzle, 1992). In
another paper, Turner et al., developed methods that allow for the uncertainty in previously
obtained ICC under the use of prior distribution of the ICC in a Baysian approach. The authors
noticed that uncertainty in the ICC will lead to some inaccuracy in the power of the study.
However, the risk of low power is low in a design based on a large number of clusters (Turner et

al., 2004).

2.2.2 Issues Involving the Number of Clusters and Cluster Size

In multi-level design studies, sample sizes for more than one level need to be addressed.
As Hox discussed in his book, the maximum likelihood methods used commonly in most
multilevel data analysis rely on an asymptotic assumption, which imply a sufficiently large
sample size (Hox, 2002). This begs the question what is the smallest sample size that the analyst
would be able to accept without threatening the validity of the asymptotic assumption. In most
cases, the problem comes from determining the number of clusters. First, as several authors have
discussed (Murray, 1998; Donner and Klar, 2000), many CRT have a small number of clusters
due to logistic and cost issues. Adding a new cluster (clinic, school, organization) to the study is
more expensive than adding more individuals. Second, it is often the objective of the
investigators to evaluate the intervention at the whole cluster level, for example, interventions

that aim to manipulate the social or physical environment (Murray, 1998).
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With respect to the impact of sample size of each level on power, a few simulation
studies on two-level designs have confirmed that cluster level sample size is more important than
the total sample size. Brown and Draper (2000) and Maas and Hox (2005) explored the influence
of sample size on power. They showed that increasing the sample size at level 2 has a stronger
impact on power than increasing sample size at level 1, under multiple ICC values.

As previously noted, the number of clusters available is usually limited, but how low can
this limit go? There have been some efforts to develop a rule of thumb in estimating sample size.
Donner and Klar (2004) suggested that once the number of subjects per cluster exceeds
1/(value of ICC), the power will not increase significantly as the cluster size increases. Thus,
when the ICC is about 0.05 then it is of little value to enroll more than 20 subjects per cluster. In
terms of accuracy in standard errors of the parameter estimates, Hox (2002) reviewed a 30/30
rule, recommending that the researchers should recruit at least 30 clusters with at least 30
subjects per cluster in order to obtain statistical accuracy.

In addition to the sample sizes at each level, another issue is how to determine the sample
size in cluster data where sample sizes are planned to be unbalanced. While many papers
described the adopting of CRT, most of them assumed the same number of subjects per each
cluster. The difference in cluster sizes is often ignored because there are very few appropriate
and easy-to-use sample size formulas for this situation. Donner and Klar (2000) suggested
replacing the number of individuals in each cluster m by an average number of individuals over

all clusters m into the sample size formula for the balanced case, or to replace m by m__, the

max !
largest anticipated cluster size in the sample. However, the authors admitted that there are some
limitations in this method, in that it either underestimates or overestimates the sample size.

Along the same line, Eldridge et al. (2006) studied sample size computation for both continuous
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and binary data for unequal cluster sizes. In their paper, they defined the relationship between the
design effect and the coefficient of variation of cluster size, which is the ratio of standard
deviation of cluster sizes to the mean cluster size. Written in terms of the coefficient of variation,
the appropriate design effect does not depend on the knowledge of individual cluster size. The
researchers also concluded that when the coefficient of variation is less than 0.23, the effect of

adjustment for unequal cluster size is negligible (Eldridge et al., 2006).

2.2.3 Existing Methods for Computing Sample Sizes

The increasing application of cluster randomized trials goes hand in hand with an
increasing demand for power assessment and sample size determination. Although statistical
methods to compute power and sample size have been developed years ago, most of these
methods focus on the computation of power in studies with simple random samples (Cohen,
1977; Chow et al., 2008). However, there has been some literature on methods that are
particularly pertinent to the computing of sample sizes for CRT and multilevel design studies. In
this review, we restrict our attentions to these publications.

Several authors presented sample size formulas for intervention studies that use cluster as
the unit of randomization. Hsieh (1988) provided sample size formulas and power contours for
simple cluster randomization and stratified randomization in CRT with two levels. Hayes and
Bennet (1999) proposed sample size calculation for CRT with three types of main outcomes:
rates per person per year, proportions, and means. Donner and Klar (2000) considered sample
size determination for randomized trials with continuous and binary data, under matched-pair
and stratified designs. Eldridge et al. (2006) presented a series of sample size formulas for both

continuous and binary data for unequal cluster sizes.
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Power formulas for longitudinal data and repeated measured data have also been
developed. Hedeker et al. (1999) derived formulas for sample size estimation and power
assessment for longitudinal study. They compared the treatment means of two groups in terms of
single degree of freedom contrasts across time. Roy et al. (2007) extended these results to cluster
studies in which subjects are repeatedly measured over time, taking attrition rates into account.
Their main interest is to test the treatment and time interaction for continuous Gaussian
outcomes.

Computing sample size for cluster randomized studies with dichotomous data is another
topic of discussion in the literature. In a pioneering paper in 1997, Shih presented a method to
compute sample size for correlated binary data based on generalized estimating equations.
Expanding Shih’s work, Pan (2001) derived more explicit sample size formulas, allowing for
different structures of covariance matrix. Dang et al. (2008), on the other hand, took a different
direction and applied the generalized linear mixed model technique to compute the sample size
for binary cluster data. This method has an advantage over previous approaches in that it allows
the users to incorporate both the fixed effects and the random effects into the model.

Due to additional factors that are involved in computing sample size for cluster data,
some researchers have developed a less direct strategy to address the power and sample size
questions. Their general approach is to maximize power by choosing the optimal number of
clusters and cluster size that produce a specified target standard error of a particular parameter
estimator. This method is based on the work by Snijders and Bosker (1993). The author used
asymptotic approximations via simulations to obtain the formulas for the covariance matrix of
the regression estimators. These formulas are then used to derive approximately optimal sample

sizes that produce the desired standard error. Methods to estimate the variance of the fixed
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effects estimators were also presented by Raudenbush and Liu (2000). The key idea of this
approach is based on an optimization process. The variance for the parameter of interest is
estimated first, and the sample size is computed later based on the corresponding standard error.

The variance formulas were derived via random coefficient models.

2.3 Review of Statistical Software Computing Sample Size in Correlated Data

Computer programs and software are available for calculating statistical power or sample
size in cluster randomized trials. This section gives a brief introduction on those programs and
software.

Most of the work reviewed in Section 2.2.3 was based on a basic principle to compute
sample size. The logic of this principle is to compute the sample size for a subject level
randomized trial and then inflate this sample size by the design effect to obtain the required
sample size for cluster data. Campbell et al. (2004) use this key idea to develop a calculator that
computes the appropriate design effect and thus the sample size, when the goals are comparing
the means or the proportions in CRT. The underlying formulas were based on two-level
completely randomized design with equal randomization and equal cluster sizes. The user is
required to specify common factors addressing a sample size problem, including (1) the
difference to be detected, (2) the standard deviation, and (3) the desired significance and power.
The output is a table of number of clusters required for varying values of ICC and cluster size.

The calculator can be downloaded at http://.abdn.ac.uk/hsru/epp/samsize.

With respect to repeated measures data, Hedeker et al. (1999) introduced a software
application named RMASS2. This is a free web-based application, available at

www.healthstats.org, that builds on the concept discussed in their paper (Hedeker et al., 1999).
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The software calculates the sample size for a two-level repeated measures design. It also allows
for attrition and a variety of variance-covariance structures for the repeated measures. To date,
this is the only software that handles sample size determination for studies that involve both
clustered and longitudinal data.

Along with their paper on determining the optimal design for a two-level design trial,
Raudenbush and Liu (2000) presented the Optimal Design software to illustrate their ideas. In
this free software (provided by the University of Michigan), restricted maximum likelihood
method was used to estimate the variance of the treatment contrast. This variance is a function of
sample size and will be minimized by different constraints. The software can compute sample
size for a two-level design with both continuous and binary outcomes. Some extension was made
to the three-level design with continuous data and treatment randomized at level 3. The software

can be found at http://sitemaker.umich.edu/group-based/optimal design software.

Snijders and Bosker developed the PINT (Power iN Two-level design) program which
estimates sample size using simulations. In the related paper (Snijders and Bosker, 1993), the
authors derived the asymptotic formulas for standard errors of the fixed effects, e.g. the treatment
effect, in a two-level design. Since these formulas are complicated, PINT was written to help the
users with their calculation. As the name suggests, this software is restricted for two-level
studies. Other assumptions include normal response model and equal cluster size. The program

and its manual are available at http://stat.gamma.rug.nl/snijders/multilevel.htm#progPINT.

Most recently, two software programs were made available to researchers in computing
sample size for cluster data, both written at approximately the same time. The first is the ML-
DEs (MultiLevel Design Efficiency using simulation) program, developed by Cools et al. (2008).

ML-DEs is a sequence of R-scripts that set up simulation studies in order to compare the
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efficiency of multilevel designs conditioned on a budget and with different sample sizes and
different costs of sampling units. This is a free software package with password required from
the authors. To run the software, however, the program R and another package called MLwiN
are required. Information about ML-DEs can be found at

https://perswww.kuleuven.be/~u0032822/ML-DEsimulation.html.

Around the same time ML-DEs was introduced, MLPowSim was developed in 2008 and
published by Browne and Golalizadeh in 2009. This is a free program designed to perform
sample size/power calculations in multilevel models via a simulation method similar to PiNT.
However, MLPowSim is more comprehensive that PINT since it can handle continuous, binary,
and count data for both two and three level designs with randomization at level three. The

program and related information can be found at http://seis.bris.ac.uk/~frwjb/esrc.html.

2.4 The Significance of Sample Size Determination in Three-Level Designs

Despite the fast growth observed across different research areas, the evaluation of
required sample sizes for three-level designs has been generally overlooked in the literature.
Although some work has been devoted to this topic of interest, a review of past studies shows
that there are at least three issues that need improvement and invite more discussion: (1) issues in
study designs with three-level structure, (2) issues with the statistical methods, and (3) issues in
analysis software and programs. A closer look at these gaps in the literature will explain the

motivation behind our work.

www.manaraa.com


https://perswww.kuleuven.be/%7Eu0032822/ML-DEsimulation.html
http://seis.bris.ac.uk/%7Efrwjb/esrc.html

25

2.4.1 The Gap in Study Designs with Three-Level Structure

It can be seen from previous sections of this chapter that although methods to compute
sample size and power in cluster randomized studies have been widely discussed in the literature,
most publications only focused on the two-level design. In reality, however, researchers might
encounter situations in which the designs and data have more complicated structure.

Examples of three level-design experiments are seen often in practice. An experiment in
education can involve measurements of students within classrooms and classrooms within
schools. In medical and health intervention research, evaluations might be taken from patients
within physicians and then physicians within centers. It is not uncommon that a researcher might
choose to ignore the cluster effect of classrooms (level 2) and treat the educational study as a
two-level design in which students are nested within schools. Similarly, one can “combine” the
effects of physicians and centers into one and view the medical research example as two-level
where clusters are the center-physician pair. The important point is that the three-level structure
is inherent in the design and embedded in the data mentioned in the above situations —
regardless of the fact that the analysts choose to take the three-level structure into consideration
or not.

The issue here is not whether to ignore one level of the data or to combine two levels into
one, but rather to ensure that the studies are planned and analyzed in the most appropriate way.
The most prudent and appropriate strategy in any statistical work is to stay faithful to the data
structure and to entertain as much as possible all the features driven by the study design. This
same principle remains to be true when planning for sample size and undertaking power analysis
in three-level studies. In other words, all three levels should be considered in the design and

planning stage for such trials. It has been well known in the literature that ignoring the cluster
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effect of one level can lead to inaccurate power and errors in parameter estimates (Murray, 1998;
Donner and Klar, 2000).

Another point that lacks of discussion amongst researchers is that most sample size
formulas seem to apply strictly to designs where randomization takes place at the highest cluster
level. There are more choices of study designs in reality. These choices involve, for example, the
allocation of treatments at the second or first level. Although the assignment to treatment at
different levels has a strong impact on the sample sizes formulas, this issue in the study design is

rarely addressed in the literature.

2.4.2 The Gap in Methods Related to Computing Sample Size

The technical issues and appropriate statistical models to compute sample size for three-
level design studies are still in debate and need more development. Reviewing published
literature reveals some room for further research. For example, in a thorough study,
Konstantopoulos (2008) investigated different sample sizes for three-level randomized designs in
three different situations when treatment assignment is given at the first, second, and third level.
Based on mixed models ANOVA/ANCOVA, the author introduced sample size formulas for
each different case, allowing for the use of covariates. Unfortunately, his method is restricted
with continuous Gaussian data and has not been expanded to binary outcomes.

Research methodologists have also attempted to derive explicit formulas for sample size
and power assessment in three-level studies. In their paper, Heo and Leon (2008) developed
closed form power function and formulas for sample size to detect an intervention effect for a
three-level data. Along the same line, Teerenstra et al. (2008) presented similar formulas but

expressed the design effects in terms of Pearson correlation. Although both of the above studies
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provide some guidelines in the choice of number of clusters and number of subjects per cluster
for a three-level experiment, they only consider randomization at the third level and do not
handle studies with binary outcomes.

Most recently, Teerenstra et al. (2010) published an interesting work in which they
derived sample size formulas for three-level CRT using generalized estimating equations (GEE).
Their approach is actually an extension of Shih’s (1997) and Pan’s (2001) methods, except that
the design effect was derived in a more elegant way. The sample size formulas presented by
Teerenstra et al.(2010) are convenient in that they can be used for both dichotomous data and
continuous data. However, a drawback of these formulas is that they are based a population-
average approach which is not useful when the objective is to make inference about the
participants. In addition, the authors did not consider studies in which randomization takes place

at the second or first level.

2.4.3 The Gap in Analysis Software and Programs

Although in some situations a simple spreadsheet program is sufficient enough to
compute power and sample size, in many other cases the formulas presented for multilevel
designs are fairly complicated. Few software programs specializing in sample size estimation are
available for CRT. The problem is, as encountered in the methodology literature, most of these
programs apply only to two-level designs. Examples include PINT, RMASS2, and Campbell’s
sample size calculator.

To date, there are only a few statistical programs that allow for computing sample size of
three-level models. However, there remain some limitations in these programs and some areas

leave room for expansion. For example, although Raudenbush and Liu (2000) did incorporate a

www.manaraa.com



28

short section about three-level data in their optimal design software manual, the tool they
provided can only handle continuous normally distributed data with treatment given at the third
level. In addition, the program does not compute sample size for three-level design with binary
data.

The software MLPowSim presented recently by Browne and Golalizadeh (2009) seems
to be the most comprehensive package that handles sample sizes in CRT for continuous, binary,
and count data. However, the method relies heavily on simulations. It is complicated to use, and
it requires several inputs from the users. Furthermore, this software does not compute sample
size for binary data with three-level designs, and does not allow for randomization at different

levels.

2.4.4 Goals and Motivation

The discussion above emphasizes the importance of sample size determination in three-
level designs. Given the increasing use and the complexity of the three-level models, there is a
need to extend the methodological issues considered and the type of applications examined.

Although in principle, the extension from the two-level to three-level designs seems to be
straightforward, the task is not simple and trivial. Adding another level means adding more
complexity to the design and another sample size to determine. Not only the resulting models
will be difficult to follow from a conceptual point of view, but the sample size formulas might be
difficult or even impossible to derive. Given the importance of the topic, it is worthwhile to
explore different strategies and different applications to address the issue of computing sample

size in three-level cluster data.
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In the work reported here, we propose a method to derive sample size formulas using
generalized linear mixed models specifically for three-level designs. We will consider situations
in which the treatment is randomized at the first, second, and third levels for both continuous
normally distributed outcome and binary outcome. We will calculate power and sample size for a
two-group (treatment and control) comparison. These methods will be implemented in a series of
menu-driven SAS macros. The intent is not to present a method that is superior to current
research studies, but rather to present a more comprehensive approach to address the same
research problem. Our primary goals are to (1) gain more understanding on the theory behind
statistical power and sample size in CRT with three level designs, (2) develop an alternative form
of the sample size formula using available information obtained from the researchers, and (3)
provide a user-friendly program to compute sample size for cluster randomization with three

levels.

www.manaraa.com



30

Chapter 3

Relevant Statistical Concepts

Although it is clear that the assessment of sample size and power is study-specific, some
basic requirements need to be established in order to answer most sample size problems. The
computation of sample size depends on several factors, including the expectation of the
researchers, the selection of the study design, the characteristics of the data, and the statistical
methods chosen by the analyst. Without sound understanding of these factors, the estimation of
sample size would be reduced to merely a guessing game.

Murray (1998) discussed specific requirements for sample size estimation, such as the
form and magnitude of the intervention effect, the test statistic and its distribution under the null
hypothesis, and the variance of the estimated intervention effect. Although these concepts
generally apply to any sample size problem, sample size consideration in multi-level designs is
further complicated by numerous factors, including the number of units for each level, the
magnitude of the intraclass correlations (ICC), the presence or absence of the random effects,
and the correlation structures specified in each model.

This chapter provides a brief review of some relevant statistical concepts that are
essential to the estimation of sample size and power analysis in cluster studies. We begin with a
refresher on the concept of statistical power and sample size assessment in Section 3.1, followed
by some basic characteristics of the ICC in Section 3.2. Section 3.3 revisits the discussion in the

literature on power and sample size in the simplest case of multilevel data, the two-level design.
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Finally, Section 3.4 offers a review of generalized linear models and generalized mixed models,

the statistical methods that we utilize in this work.

3.1 Statistical Power and Sample Size Assessment

The concept of statistical power and sample size determination has been studied
extensively in the literature. Excellent discussions of this topic can be found in basic statistical
works such as Cohen (1988), Murphy and Myos (2004), Chow et al. (2008). In his book, Cohen
(1988) presented a detailed treatment on power analysis and the corresponding formulas to
compute power, together with numerous tables of sample sizes for different situations. Murphy
and Myors (2004) provided an overview and introduced a set of procedures for power analysis
under the context of general linear model. Chow et al. (2008) discussed sample size calculations
for various study designs in clinical research. Power and sample size considerations are also
covered in textbooks written specifically for cluster randomized trials, such as Murray (1998)
and Donner and Klar (2000). The discussion in this section relies heavily on these

aforementioned publications.

3.1.1 Hypothesis Testing

One of the most important objectives of statistics is to make inferences about unknown
population parameters based on information drawn from sampled data. Methods for drawing
inferences about parameters can be classified into two types: (1) to estimate the values of the
parameters and (2) to establish decision rules about parameter values and apply these decision
rules based on the data. The later method is referred to as hypothesis testing, a topic that we will

elaborate in this section.
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A hypothesis is an assertion or conjecture concerning one or more populations of interest.
In other words, it is a statement about population parameters (Casella and Berger, 2005). In
hypothesis testing, research hypotheses are constructed first, leading next to the statistical
hypotheses. A research hypothesis is a speculation or supposition created by the researchers
based upon past observations or previous experimental outcomes. A statistical hypothesis is a
statement that can be evaluated by appropriate statistical methods and techniques (Daniel, 2009).

Hypothesis tests are common in many situations in which a theory or a speculation is to
be tested against observation. For example, a medical researcher might hypothesize that a new
drug is more effective than a traditional drug in treating a certain disease, or an educator might
claim that two methods of teaching are equally effective. The role of statistics in hypothesis
testing is to make decisions when comparing the observed sample with the theory: does the
sample agree with the researcher’s hypothesis? Should we support the hypothesis? What is the
probability that we will make a wrong decision? And particularly, how large is the sample size
required to reduce the chance of error and to reach the decision correctly? (Cohen, 1988)

The structure of hypothesis testing is formulated with two statistical hypotheses: the null
hypothesis and the alternative hypothesis. The null hypothesis is usually denoted by the symbol
Ho. Often, the value chosen in the null hypothesis is a historical value or a claim. For example,
suppose that on average a traditional drug cures 50% patients from a certain disease, then we
might use a null hypothesis Hy : p=0.5 for a study comparing the effect of a new drug to a
traditional drug. In general, the null hypothesis is set up for the purpose of being disproved.
Thus, the complement of the conclusion that the researchers seek to prove is the null hypothesis.
Any hypothesis that is opposite to the null hypothesis is called an alternative hypothesis, denoted

by the symbol Ha. The alternative hypothesis is a statement of what the researchers believe to be
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true if the sample data calls for a rejection of the null hypothesis (Daniel, 2009). For instant, in
the new drug experiment if we believe that the new drug is more effective than the traditional

one, the alternative hypothesis can be stated as Ha: p>0.5.

3.1.2 Statistical Power

The purpose of any statistical test is to reach a conclusion. One could either reject or not
reject the null hypothesis, but hypothesis testing does not lead to a proof of a hypothesis in
general. It merely implies whether the alternative hypothesis is supported or not supported by the
given data. If the null hypothesis is not rejected, it means that the data do not provide enough
evidence to refute it. On the other hand, rejection of the null hypothesis simply indicates that the
sample evidence is sufficient enough to support the alternative hypothesis.

What if we make a wrong decision? The states of nature can be partitioned into two
options, either Hy is true or Hy is not true. Similarly, the decisions lie between the choices of
whether to reject or not to reject Hy. Suppose the researcher rejects the null hypothesis when it is
in fact true, then a type | error has been committed. On the other hand, if the researcher
mistakenly retains the null hypothesis when it is indeed false, then a type Il error arises. The two

types of errors are illustrated in Table 3.1.

Table 3.1: Probabilities Associated with a Statistical Test

Our Decision
Truth of Hy Do not reject Hy Reject Hy
Ho is true Correct decision (1-« ) Type | error (a)
Ho is false Type Il error (S3) Correct decision (1- S =Power)
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The maximum type | error probability which a researcher is willing to risk is called the
level of significance of a test, denoted by « . Usually « is specified in advance before the sample
is drawn so that the results will not influence the level of significance of the test. The probability

of making a type Il error is denoted by £ . In hypothesis testing, it is desirable to choose « and
£ as small as is practical.

Power is the probability of rejecting the null hypothesis when it is in fact false. To phrase
differently, power is the probability that the test will be able to detect that the alternative
hypothesis holds when that is the true hypothesis. It should be noted that both power and type |
error probability are functions of the interested parameters. In Table 3.1, power is represented by

the quantity 1— £, or one minus type Il error probability.

One common question is how much power we can expect to achieve given a level of
significance. A decision not to reject Ho (first column) means the researchers either made a
correct decision or committed a type Il error. By the same token, a choice of rejecting Hy
(column 2) means the researchers either made a correct decision or to committed a type | error.
Thus, it is incorrect to criticize a researcher who rejected Hy to have committed a type Il error. In
contrast, a researcher who did not reject the null hypothesis is exposed to type Il error and his
study might be vulnerable to the lack of power. One cannot conclude a new drug is ineffective in
a study with low power because such study would have little chance of detecting a statistical

difference between the two drug treatments. (Donner and Klar, 2000).

3.1.3 Sample Size Calculation in General

Sample size calculation is a process of computation that yields the size of the sample

required to test a specific statistical hypothesis stated by the researchers. In general, to determine
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a sample size, researchers are required to specify four pieces of information (1) the significance
level, (2) the desired power, (3) the effect size, and (4) the standard error of the effect size. We
will discuss these concepts in the context of a clinical trial testing the effectiveness of a treatment
between intervention and control groups.

As defined previously, the significance level represents the probability of mistakenly
rejecting the null hypothesis, and the power reflects the probability of correctly rejecting the null
hypothesis. In a typical experiment, a significance level of 5% is chosen. In the literature, a
conventional desired power is often set at 80% or 90%.

The effect size is a measure of the difference between the two groups that is judged to be
clinically important. In general, if the researchers are settled for a large effective size, a smaller
sample size is needed. However, if the effective size is relatively small, a larger number of
subjects will be required. Researchers should keep the structure of the effect size as simple as
possible. For example, if several differences amongst the means are of interested, only one
should be chosen as the primary outcome. Similarly, if there are different treatment groups, only
two that relate to the contrast of primary interest should be considered (Murray, 1998).

Finally, knowledge of the standard deviation of the main outcomes is important for
sample size estimation. As a general rule, a very precise method of measurement will detect any
given difference with a much smaller sample size compared to the sample size required with a
less precise method of measurement. In cluster randomized trials, the knowledge of standard
deviation is usually connected to the expression of the variance of the estimate of the

intervention effect, which we will discuss later.
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Snijders and Bosker (1993) proposed the following formula to link the four quantities
required in a sample size calculation together, under the normal distribution assumption for the

variable associated with the effect size:

5:Z

SE (5) 1-(al2) +Z

-5

In this formula, « is the significance level of the test, 1— /4 is the power of the test, o is
the effect size, SE(&)is the standard error of the estimated effect size, and Z, ,,, and Z,_,are

the quantiles of the standard normal distribution associated with the values of 1—«/2 and 1- 3.

It can be seen from the above formula that given three out of four factors, the fourth
factor can be computed. In many types of designs in practice, this formula is a valid
approximation that can be used to compute the sample size required for a certain level of power.
In multilevel designs, however, more than one level of sample sizes is needed. Difficulty also
arises in determining the standard error of the estimated treatment effect in cluster randomized

trials. We will turn to the details of this discussion later in Section 3.3.

3.2 Intraclass Correlation

The sampling of subjects into experiments via clusters introduces special considerations
that need to be addressed in sample size determination and power analysis. Outcomes measured
from subjects within the same clusters tend to be similar and are not independent. In the
literature, this level of dependency—the effect of clustering—is estimated by the measurement
of the intraclass correlation. In this section, we will discuss the effect of clustering in two-level

designs and then expand the idea to three-level designs.
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3.2.1 The Effect of Clustering in Two-Level Designs
Consider an experiment in which sample of clusters of individuals are randomly assigned

to two experimental groups: treatment and control. Let Y, represent an observation from the i

subject within the j" cluster within the k™ treatment, and let the variableY;, have a common total
variance of o?. Let all clusters have the same n number of subjects, and each of the two
treatment arms have the same number of m clusters. The variance of a cluster mean is
— 0-2
Var (Yc ) =
where o is the within cluster variance.

Furthermore, assuming constant variance across the clusters, the variance of the treatment

mean can be written as:

Var (Y_T) = :—;

Since the units of randomization are clusters, the dependency between individuals within

the same cluster exists. In such situation, the total variance can be decomposed into two
components, a between cluster variance o and a within cluster variance o, so that
o’ =0c}+o,.

To take into account the effect of this dependency, we introduce the quantity intraclass
correlation, denote by p, into the variance formula. Here, the parameter p can be viewed as the
pair-wise correlation coefficient between any two measurements in the same cluster, meaning

p:Corr(Yijk,Yi.jk). With the assumption that p is positive, we can also interpret p as the

fraction of the total variation in the data that is attributed to the unit of assignment. In other
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words, pis the proportion of the total variance that is accounted for by the between cluster
variation:

2
Og

ol +o?
Methods to estimate the ICC were reviewed in Chapter 2. A classical approach is to apply
the analysis of variance among and within cluster. In this method, the ICC is obtained by the

following equation:

MSC-Msw  s?
MSC +(n-1)MSW ~ S; +S,,

p =
Where:

e MSC and MSW are the mean square error between and within cluster respectively.

MSC — MSW )
n

e Si= ( and S} = MSW are the estimates of o2and o, respectively.

With clusters serving as the units of randomization, the variance of cluster mean now takes a

different form that reflects the variation between groups and within members:

Var(Vc)Z%ﬁ-O‘;

And the variance of treatment mean is:

2 2

v O, O
Var(YT)z—W +-—£
mn m

Written in terms of the total variance and p, the final formula yields:

Var(VT)zg—;[H(n—l)p]

A few implications can be drawn from the above equation:
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e When the estimated value of p is zero, the formula for the variance of treatment mean is

reduced to the usual form of the variance of treatment mean under the assumption of

independence amongst cluster members. On the other hand, when p =1, we have the total

dependence situation. In this case, all measurements in a cluster are identical and the total
information gained from a cluster is no more than information gained from a single
member (Donner and Klar, 2000).

e The variance of the treatment mean in cluster randomized trials equals the variance of

treatment mean under the assumption of independent errors multiplied by a quantity of

1+(n-1) p in two level-designs. This quantity is called the variance inflation factor, or

the design effect. As we will see later, the design effect plays an important role in the
estimation of sample size (Murray, 1998).

e Since the value of p is always positive, the design effect increases when p increases

and when the cluster size n increases. When n is large the design effect can be large even
with a small ICC. Thus, the variance of treatment mean is always larger in cluster designs
than in studies without cluster effect and with equal total number of subjects (Donner and
Klar, 2000).

e Analytical methods that treat clusters as the unit of analysis and take proper consideration
of the cluster effect can provide the tests for the treatment effect. However, given all
other factors constant, the tests might have lower power than would be obtained in

independent cases (Hedges and Hedberg, 2007).
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3.2.2 The Effect of Clustering in Three-Level Designs

The concept of the intraclass correlation as a measure of proportional variation can be
extended to designs with more than two levels, the only difference is that we now have more
variance components involved and there are different ways to define and interpret the intraclass
correlations.

Consider an experiment involving a three level design in which patients are nested within
physicians, and physicians are in turn nested within centers. The total variance in the outcome

can be decomposed into three components: The between patients nested in physicians (level 1)

variance o, the between physicians nested in centers (level 2) variance af,, and the between

centers (level 3) variance o . Thus, the total variance is of = o, +o; +o¢ . In the context of a

three-level design, two definitions of the intraclass correlations are being circulated in the
literature.

The first method specifies the intraclass correlation at the physician level as

and at the center level as

www.manaraa.com



41

and at the center level as

..

The choice of which method to apply depends on the goal of the analysts. The first
method should be used when our focus is on decomposing the variance components across all
levels, or on estimating how much variation is explained by each level (Hox, 2002). On the other
hand, the second method allows for an estimation of the correlation between two randomly
chosen subjects in the same group. For example, in the second method r represents the
correlation between two patients related to the same physician, and r also takes into account that

two patients seeing the same physician are visiting in the same center. In the same context, p

represents the correlation between two patients in different centers (and thus different
physicians). Some authors view the intraclass correlation under the second method as an analogy
to the Pearson correlation (Teerenstra et al., 2008).

Similar to what we have seen in the two-level designs, the variance of the treatment
means in three-level situations can be written as a product of the variance that would be obtained
if all outcomes are independent and a variance inflation factor. This statement will be discussed

with further details in Chapter 4 and Chapter 5.

3.3 Computing Sample Size in Two-Level Cluster Designs

Before proposing the methods to compute sample size for three-level cluster randomized
studies, a refresher on how the sample size formulas for two-level designs were derived would be
helpful. First, we will review how sample sizes are computed in an individual randomized
clinical trial. Next, we will discuss how the same formula is extended to a two-level cluster

design.
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3.3.1 Power in a Simple Clinical Trial
Consider a simple clinical trial in which 2N subjects are equally randomized into two treatment

groups. Let Y; be the observation of the i subject in the j™ treatment. The model can be written:

Yi = 1+ &
where j=1,2and i=1,..,N and &; ~ N(0,c7).
Suppose our hypothesis is to test the difference between the treatment effects:

Hy iy =p, versus H,o o # u,

Denote the estimates of the difference in the two treatment means as

~2
Let o be the estimated variance of that difference under the null hypothesis.

Assuming equal variances in the two groups, then:

~2
~2 20
Oor=—ro

A Z-statistic can be used to test the treatment mean difference.

Under the null hypothesis of no treatment effect, Z ~ N(0,1) .We reject the null hypothesis when
1Z>Z,,
Under the alternative hypothesis that s, = 1, +5 , then Z ~ N(x’,1), where

« 0
/J =

~2
oA

The corresponding power is given by
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P{| Z> Za,z} ~ P{Z > ZaIZ}
:1_q){za/2 —ﬂ*}
=1-8

In order to achieve the power of (1- £)100% , we need

*

Lyp—H ==Ly OF H =2+ Zy
Substitute this into the equation for z above, we get

o

ot
s

=Za,2+Zﬂ

- =Z,,+2Z,

N
=5
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From here, we obtain the usual sample size formula testing the difference between the two means

. :282(za,§+zﬁ)2
5

3.3.2 Power in a Two-Level Cluster Randomized Trial

Now assume that a number of m clusters, rather than individuals, are randomized to each

treatment group. Furthermore, assuming each cluster has n subjects and the clusters were chosen

randomly from a larger population. Thus, the total sample size is N=mn. The model becomes:

Yijk = u+C, +Tj + &
e wherei=1,...,m, j=1,2, and k=1,...,n
e C; represents the cluster effect

e T, represents the treatment effect

& ~N(0,0¢)and C; ~Normal (0,07)
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The intraclass correlation is defined as

2
O-C

ol+o?
Where o7 is the between cluster variance and & is the within cluster variance.
The total variance of Y; is o’ =0’ +0?

As derived in Section 3.2.1, the variance of the difference in estimate treatment means is

~2
~2 2
G =%[1+(n—1)p]

Substitute this into the sample size equation

o
- =Z,,+Z,
(oY

The total sample size is now

. 26 (2,,+2,) (1+(n-D)p)
_ .

Compared to the simple randomized clinical trial, the sample size in two-level cluster
randomized trial is “inflated” by the variance inflation factor of(l+ (n —l)p). Since this variance
inflation factor depends on the variance of the treatment means, the problem of computing

sample size in cluster data really boils down to the problem of deriving the variance of treatment

effect.
3.3.3 Power and the Effect of Randomization

Randomization, an important component of experimental research, can be accomplished

through two major types of design (1) a subject-randomized design and (2) a cluster-randomized
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design. In Section 3.3.2, we discussed the derivation of sample size formula in two-level designs
in which group of subjects (clusters) was assigned to different treatments. However, there are
many situations in which for a given effect size, the randomizations can occur at different levels.

Unit of randomization plays an important role in computing sample size and power
analysis. For example, the model presented in Section 3.3.2 is no longer true if the individuals,
instead of clusters, are randomized. Raudenbush and Liu (2000) discussed this issue in a two-
level design applied for multisite experiment, where persons within a site are randomly assigned
to one or two more treatments. The sample size formula in this case is more complicated, since it
takes into account the possibility that treatment effects can vary across different sites.

The situation is more complicated in three-level designs, when randomization could
happen at any of the three levels. For instant, in the example discussed in Section 3.2.2,
treatment assignment could be done at the level of patient, or provider, or practice. We will see
in later chapters how the level chosen for random assignment will affect the variance-covariance

structure of the statistic model and the corresponding sample size formulas.

3.4 Generalized Linear Mixed Models

In the course of this work, we will present methods to compute sample size and power for
three-level cluster designs based on generalized linear models (GLM) and generalized linear
mixed model (GLMM) approaches. To stimulate further interest, this section pulls together some
basic concepts of the GLM and GLMM. The concepts introduced here will recur frequently in
subsequent chapters. Understanding the definitions and their relevance is important, especially
for looking at their applications in the context of three-level design. The discussions in this

section are drawn mainly from Brown and Prescott (2006) and Littell et al. (2007).
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3.4.1 Linear Mixed Models
Consider a normal linear model
Yi = 1+ B+ BoXip + ot BoX, &
&~N (0,62)
In this model, the regression coefficients betas represent the fixed effects and the error term is

the only random effect. In matrix notation, it can be written as

Y =Xp+¢
e~N,(0,0°1,)
Where Y =(y,, Y,.....¥,)" is the vector of the observed values
B=(. B, 13,)" is the vector of the fixed effects

e=(&,6,...&,)" Iisthe vector of the residuals

The normal mixed model extends the above fixed effect model by including additional
random-effect, random coefficients, or covariance terms in the residual variance matrix. Normal
mixed effects are often appropriate for representing clustered and dependent data. In normal
mixed models, the random effects are assumed to follow a distribution and the fixed effects are
considered constant. In matrix notation, a typical normal mixed model takes the form

Y=XB+Zy+¢
where
Y is an n x 1 vector of observed values
X isannx (p +1) design matrix (of column rank p)

Bisa(p + 1) x 1 vector of fixed effects (including the overall mean )

Z.is an n x g second design matrix for the random effects y
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y isaqx 1 vector of random effects, where y ~ N, (0,G)and G = {af,a

c!

g isan n x1 error vector where ¢ ~ N, (0,R)and R=0c"I

47

2 2
0?)

Under the above assumptions, the variance of the observation vector can be written as

V(y)=V=V(Zy)+V(e) = ZGZ + R

To give a general idea on the structure of V, consider a simple example with a study of two

centers, each with two patients, one in each treatment. Here we have p=2 and q=2 (thus the total

sample size is 4).

Yiu1 €111
| Yo | €
Y= y €=
Ya1o E312
Y2 Ea2
110 10
7
X 101 = 5 |.z= 10 |n
R s A D R P
101 s, 01

1 0
1 0| o’ 1 1 0
V= e 0 +0°1
0 1|0 o2]0 1
0 1
c: o 0 0 ol +o’
o o 0 0| :
= ) , |[Tol=
0 0 o o 0
0 0 o o 0
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Note that specifying the random effects is a convenient way to form the structure of the
variance-covariance matrix. The above model is equivalent to a fixed effects model with the
normally distributed residuals that share the same variance-covariance matrix as specified. In

other words, we can write Y =Xp+¢

With the same Y and B and £~ N (0, V)where V is defined as above.

3.4.2 Generalized Linear Models (GLM)

Normal linear mixed models work under two distinct assumptions: the errors and random
effects are normally distributed, and the response variable is modeled directly as a linear
combination of the fixed and random effects. These assumptions are not met in many practical
situations where data are non-normal, such as studies with binary or count outcomes. In these
situations, Generalized Linear Models are available for fitting non-normal fixed effect models
with three basic components.

The first component is called the random component, referring to the response variable

Y =(Y,,¥,.-Y,)- Y belongs to the exponential family with a probability density function with
the following general form:

f(v:6)=exp{[v6,-b(6)]/a(¢)+c(v,.9)}
where @is a location parameter and ¢is a dispersion parameter that only appears in distribution

with two parameters (such as normal distribution). The forms of the function a, b, and c are
different in different distributions.

For one-parameter distributions, the general form can be simplified to:

f(vi6)=exp{[,6,-b(6)]/a+c(y,)|
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It can be shown that the mean and variance of the random component can be written in

terms of a and b as follows
E(y)=u=b'(0)
Var(y)=b"(6)
Hence, we can find @ by =b""(x).
The second component relates a vector n = (771,772,...,77n ) to the model fixed effects g and

the predictors X by a linear combinationm = X . This linear combination of the fixed effects is

called the linear predictor.
The third component is a link function that links the linear model to the mean of Y

through the formula

g(p)=n=Xp where g(.) is monotonic and differentiable

n=E(Y)
Note that the normal linear model is a special case of GLM in which the link function is the
identity link g ()= .

In general, the GLM can be defined using the matrix notation similar to normal models as
follows

y=p+e

g(n)=Xp
Thus, the variance-covariance matrix of this model is

Var(y)=Var(g)=V
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For a sample of n observations, the variance takes the form V = AB ,where A = diag [ai (¢)]

and B =diag [bi (49)] both are n x n matrices. For example, in the binomial distribution with

n=4, we would have

1/n, 0 0 0 (1= 1) 0 0 0
A 0 1/n, O and B — 0 1y (1 11,) 0 0
0 0 1/n, 0 0 1 (1 425 0

0 0 0 1/n, 0 0 0 iy (1 11y)

3.4.3 Generalized Linear Mixed Models (GLMM)

The Generalized Linear Mixed Models are the extended version of Generalize Linear
Models to accommodate models with random effects. The extension is carried out through the
link function. Here, the general model takes the same form of

Yy=R+E
However, the random effects are now added to the link function
g(n)=Xp+Zy
where
e Yisannx1vector of observed values
e Xisannx (p+1) design matrix (of column rank p)

e pisa(p+ 1) x1vector of fixed effects (including the overall mean )
e Zisann x g second design matrix for the random effects y
e 1y isaqx 1 vector of random effects independent of &, and y ~ N, (0,G)

e ¢is the vector of errors and E(¢)=0 and Var(g)= AB where A and B were defined

previously.
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The key difference between the normal mixed model and GLMM is that ¢ is not
necessarily assumed to be normal.
The variance of y is
V(y)=V=V(n)+V(e)=V(n)+AB.

To illustrate the structure of A and B, consider a simple data set with 6 Bernoulli(y)

observations, we then have:

[ (1 14) 0 0 0 0 0
0 1 (1- 1) 0 0 0 0
g_| O 0 (1= 14) 0 0 0
0 0 0 pe (1= 12, 0 0
0 0 0 0 pe (1= 12, 0
0 0 0 0 0 pe (1= 11,)
1.0 0 0 0 0]
010000
A_[00 1000
000100
000010
00000 1

Discussion on how GLMM is applied in computing sample size for binary data will be

presented with more details in Chapter 5.
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Chapter 4

Power and Sample Size for Continuous Outcome

In Chapter 1, we introduced a few examples with three-level cluster design studies and
different possible outcomes. In the simplest situation, these outcomes are continuous and
normally distributed. In this chapter we present methods to compute power and sample size
assuming a linear mixed model. We will derive the power formulas and the general forms of the
variance structures for six different situations: (1) randomize at level three, (2) randomize at
level two without interaction, (3) randomize at level two with interaction, (4) randomize at level
one without interaction, (5) randomize at the level one with interaction between treatment and

level three and (6) randomize at the level one with interaction between treatment and level two.

4.1 Linear Mixed Model Approach
Consider a three-level study design in which patients are nested within physicians, and

physicians are in turn nested within centers. Let y;, be the response observed at k™ patient, j™

physician, and i" center. Furthermore, let N be the total number of centers, p be the number of
physicians in each center, and n be the number of patients visiting each physician (balanced
design). The total sample size is T=Npn.

Assuming both level two (physician) and level three (center) are random effects and no

covariates are included, the total variance in the outcome can be decomposed into three

components: the within physicians and between patients (level 1) variances?, the between
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physicians (level 2) and within centers (level 3) variance af), and the between centers (level 3)

variance o .

The intraclass correlation between patients nested within the same physician and the

same center can be specified by:

corr(yijk,yijk.)_ =T

The intraclass correlation between patients within the same center but under different physicians

can be specified by:

2

corr(yy. 9, )~ 5=
Under mixed models notation, we can write
Y=XB+Zy+e
where
e Yisthe (T x 1) vector of the observed outcome data
e Xisa(T xm) fixed effects design matrix
e pisa(m x 1) vector of regression fixed effects coefficients
e Zisa (T xq)random effects design matrix.

o yisthe (qx 1) vector of random effects, y ~ N (0,G)

£ is the error vector, £~ N (0,071)
Follow the properties of Multivariate Normal distribution, we have Y ~ N (Xﬁ,W) where

W =Z7ZGZ +0o1
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For any type of mixed model, the sample size and power estimates depend on the variances of

the fixed effects, which can be found by
A N -
Var ( p) - (Z xiTV‘lxij (4.1)
i=1

where X, is the corresponding design matrix to center i and B is the vector of regression

coefficients for the fixed effects.

Assuming the treatment effects are fixed and the model has no other covariates (m=2),
then B =(ﬂ0,ﬂ)T where g, is the expected measurement for a patient in the control group and
B, + p is the expected measurement for patients in the intervention group. The hypothesis of

interest can be written as

H,: =0
H,: f=d=#0

To test this hypothesis, a Wald-type test based on asymptotically normal distributions can

be used. The asymptotic variance of \/W(,@—ﬂ) is determined by the right lower corner

element of the estimated variance-covariance matrix £ =Var [\/W(ﬁ - B)}

The power to detect a difference of size d with a two-sided type | error rate of « is:

N N
al2,é —d + Tt,g _ta/2,§ —d Y
Var(ﬂ)

Var( )

where T, . is the cumulative distribution function of the t-distribution with & degrees of freedom

power =1-7_,| t

te

and t,,, . is the 100 & % percentile from the t-distribution with & degrees of freedom. The value

of £depends on the analysis method and the level where randomization takes place.
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In many sample size problems, computing the variance estimator Var(,@’)is the main

task. Once Var(,Z’)is obtained, we can easily plug its value into the above formula to estimate

power or sample size. In three-level design, power depends on the sample size of all three levels,

i.e. the values of N, p, and n. Although in the above formula n and p do not appear explicitly,

their roles are embedded in the computation of Var(ﬁ). The following sections derive the

formulas for Var (,3’) for different levels of randomization.

4.2 Randomize at Third Level

4.2.1 Estimate Var(ﬁ)

Assume that the centers are randomized such that z N centers are in the treatment arm

and (1- )N centers are in the control arm. The number of patients allocated to the treatment arm

is Ti;=zNpn, and the number of patients allocated to the control arm is T,=(1-z)Npn. The

design matrix is X; = Xi.x =(1pn,1pn) if the i center is randomized into the treatment group,

and X; = X, =(1,,,0,, ) if the i*" center is randomized into the control group.

When randomization occurs at level three, the matrix V can be written as:

V=I,8(clL,+03d,)+cld,,

For example, consider the i center with two physicians and each physician has two patients.

Then

oy o, +o0
2 2
o, +0o o
V|- _Zp____ T T_
- 2 2
GC O-C
2 2
GC O-C
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Factor out the total variance o7, we obtain V = o?R , where
R=1 ®[(1-r)I,+(r-p)J, |+pJ,

For the example above,

1 r!p P
R= I__%_i_/_’__E
p oprlor
p pir 1

The robust variance estimator of \/ﬁ(ﬁ —B) is

N—w =y

T=1limN (ZXSV*XJ

i = O-'I? Ilm N |:N7Z-(X T1{-1)(treat ) +N (1_ ”)(XcomrolTR-IXcontrol )j|_1

N —>o0 treat

3= O'T2 |:7Z' (XtreatTR-IXtreat ) + (1_ 7[) (XcomrmTR-lXcontrol )j|_1

Following the derivation procedure presented by Shin (1997), S can be rewritten as

o o]

$_ o? 1 T -7
1"R"1 72'(1—7r) -r 1

Var(ﬁ) is the right lower corner element of the above variance-covariance matrix S which is

2
Or

(1-7)(1"R™1)

Var(,@) = -
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The quantity (ITR'll)fl is proportional to the design effect (variance inflation factor). This is a

scalar with the value equal to the sum of all elements in the matrix R™.The exact expression of

(ITR'll)f1 will be derived next.

4.2.2 Derivation of 1"R™1

This derivation is based on the work from Teerenstra (2010). The two following results
from Henderson and Searle (1981) will be used recurrently in this section:
Result 1:

If A and B are arbitrary nonsingular square matrices of same dimension, then

(A+B)" = A= A'B(1+A%B) AT =[1-A7B(1+A"B) " |A”

Result 2:

(a|q+qu)1=1[|q— b JqJ

a a+bqg
Recall that correlation matrix R for a given center i" takes the formR = A+ B , where
A=1,®[(1-r)l,+(r-p)J,] and B=pJ

Apply result 2 , we obtain

At :(ﬁ}lp ®{In —[H(nr__lﬁ_np}n}

Let y=1+(n-1)r—np, then

(el {5
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Again, apply result 2 we get

ap\t_, ___ P
(1+A7"B) =1, 7+pan

pn
Denote ¢ =y + pnp=1+(n—-1)r+n(p—1)p, then

(1+A7B) =1, -23

pn pn

Substitute the A™, A"'B, and (I + A‘lB)_lin R =(A+ B)_lusing result 1 we have

R—1=i|:|pn_£‘]pn:||:|p®( n_r__p‘]nﬂ

1-r ® %

1TR-11=L1T[lpn—EJpn}[lp@)( n—r_—pJnﬂl
1-r @ 14

I'R=—1 1——p"pJpn}1T1{1——n(r_p)}
1-r ® ¥

Thus,

'RM=—2|1- pnp}{l_n(r—p)}pn:m
1-r @ /4 @

Hence, when randomization takes place and the third level, the design effect is given by

p=1+(n-1)r+n(p-1)p.
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4.3 Randomize at Second Level without Interaction Effect

4.3.1 Estimate Var(ﬁ)

Assume that for a center i, the physicians are randomized such that 7 p physicians are in
the treatment arm and (1-)p physicians are in the control arm. Thus, the number of patients
allocated to the treatment arm is T;= Npn, and the number of patients allocated to the control
arm is T,=(1-~ )Npn. Furthermore, assume that there is no interaction effect between treatment
and center, i.e., any difference due to treatment is the same in every center. Under these

assumptions, the correlation matrix R remains the same form as described in 4.1.2:
R=1,®[(1-r)I,+(r-p)J, |+pJ,
The covariate matrix X, for a center i" is a pn x2 matrix. The first column of this matrix

contains all ones, whereas the second column contains ones in the first 7 pn rows, and zero in the
remaining (1- z)pn rows. For example, consider a simple experiment in which each center i
has four physicians, and each physician has two patients. Suppose the physicians in each center
are randomized such that the first two physicians are in the treatment group and the last two are

in the control group. For a given center i, the matrix X takes the following form:

Il
R N T T = T T = =

O O O O = -

The robust variance estimator of \/W(ﬁ - [3) is
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~ N =
T Tyr-1
Z_L@ON(;Xi A% Xij
BT Tp-lv ¢
3 =o? ,L'[]lN[NXiR X; |

S=of[XIR7X, ]

Var(,b’) is the right lower corner element of the above variance-covariance matrix X .

4.3.2 Derivation of X{R"X,

Under the assumption of no interaction, the matrix R™*remain the same as derived in 4.1.2

R_1=i|:|pn_£‘]pn:||:lp®[ n_r__p‘]nﬂ
1-r 1) %

where y =1+(n-1)r—np and

p=y+pnp=1+(n-1)r+n(p-1)p.

Expanding elements in the brackets, we have

Rflzi |p®[ n_r__p\]n}_ﬁ\]p{%@( n_r__p\]nﬂ
1-r Y ¢ Y

TP _aand 2-p
e 2

For simplification, let

R :ﬁ{lp ®[1,-al,]+b[na-1]J,,}

The matrix X/ R™X, is a 2 x 2 matrix with the following elements

XRIX Zall elements in R Zelements in first zpn columns of R
Zfirst 7 pn rows of rR! Zelements in first 7 pn columns and first 7 pn rows of rR!
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Denote s as the sum of all elements in R™ and write s intermsof a,b,n,and r

s :ﬁ[ p(n-n’a)+ pznzb(na—l)J

- %[ pn— pn°a+ p’n°ab— p*n’b |

Denote t as the sum of all elements that are in both first 7 pncolumns and first zpnrows

of R .

t :ﬁ[ pz(n-n’a)+ pznzzzb(na—l)}

:ﬁ[ pnz — pn*za+ p’n’z’ab— p*n°z’h |

Since R*is symmetric then

B S 7S
XiTRIXi:[ }

s t

Add and subtract pn’z°a— pnz?*to the inside of the brackets of t
t:i[( pnz — pn’za+ pn’z’a— pnx’ )+ ( pnz’ — pn°r*a+ p’n’rab - pznzﬂzb)}
1-r

1 1
:ﬁ[ pnz(1-7)(1-na)]+ 7’ {ﬁ( pn— pn?a+ p2nab— pznzb)}

Note that the terms in the second bracket equal s, the sum of all elements in R™. Also, note that

nr-np y—-nr+np 1-r
4 4 4

l1-na=1-

Substituting this into t we get

_pnz(l-7)

t +7°s
Vv

Thus
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S TS
X'R'X = _
: " xs —pnﬂ(l ﬁ)+7z23
y
And
o Pz(-m) o s
XN = onetimy
pnz 4 —7TS S

The robust variance estimator of \/W(ﬁ - B) §

N

S=o?[XIR'X, |
The right lower corner element of the above variance-covariance matrix S is

Var(,@) B pnzra(le—z)

Hence, when randomization takes place at the second level and assuming no interaction between

center and treatment effects, the design effect is given by y =1+(n-1)r—np.

4.4 Randomize at Second Level with Interaction Effect
4.4.1 Estimate Var(ﬁ)

Assume that in each particular center i, the physicians are randomized such that 7 p of
them are in the treatment arm and (1- 7 )p of them are in the control arm. Thus, the number of

patients allocated to the treatment arm is T;=7 Npn, and the number of patients allocated to the

control arm is T,=(1-z)Npn. When the interaction between treatment and center exists, the

robust variance estimator of \/ﬁ(ﬁ—[}) can be obtained by computing s :[xjv*xi ]_1. The
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variance of the estimator Var(,@’) is the right lower corner element of the above variance-

covariance matrix ..

The distinction between randomization at second level with interaction and without
interaction is that a new variance component representing the interaction between treatment and
center is added to the model. The introduction of this interaction term changes the structure of

the variance matrix V.

4.4.2 The structure of V

Denote this variance of the interaction as ¢ , the total variance is now

ct?
o =0l +0,+0. +04
o2 allows for the impact of treatment on the outcome measurement to vary across centers.
Under mixed model theory, the structure of V can be written as follows:

V =block (U,T)+J,,(7) , where:
u=1,, ®[|n(a§)+ Jn(aﬁ)]+J”np(0§)

T=1y 0, ®[In(aj)+Jn(a;)]+J(l_”)np(oft)
To illustrate, suppose there are two centers, each center has three physicians and each physician
has two patients. Furthermore, suppose randomization takes place at the physician level where
the first two physicians are in treatment arm and the last physician is in control arm. For one

center, the V matrix is:
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ot a)ziu2 UZ!O'CZ o’
o* ol v v lo? ol
v |V Vel o ol ol
vl v le of o ol
ol ofi 2 ofio-Tz o’
loc ool ol o]

where v’ = o] + 0y and o’ =0 +0} +0}.
There is no closed form for the right lower corner of the matrix S = [Xfolxi ]71. Thus,

we will use the general formula specified in equation (4.1) to compute Var(ﬁ’).

4 5 Randomize at First Level without Interaction Effect

4.5.1 Estimate Var(ﬁ)

For a the j™ physician in the i center, suppose the patients are randomized such that zn
patients are in the treatment arm and (1-)n patients are in the control arm. Thus, the total
number of patients allocated to the treatment arm is Ti;=zNpn, and the number of patients
allocated to the control arm is T,=(1—)Npn. In addition, assume that there is no interaction
effect, i.e., the treatment works the same in every center—physician pair. Under these

assumptions, the correlation matrix R remains the same form as described in 4.1.2:
R=1,®[(1-r)I,+(r-p)J, |+pJ,
The covariate matrix X, for the i"" center is a pnx2 matrix. The first column of this matrix

contains all ones, whereas the second column contains ones in the z pn rows corresponding to
those patients allocated to the treatment group, and zero in the (1— 7z )pn rows corresponding to

those patients allocated to the control group.
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For example, consider a simple case with two centers, each center has two physicians,
and each physician has four patients: two patients are in the treatment group and two are in the

control group. The X; matrix for the i center is as follows:

s

Il
e
O O FR P OO R kP

The robust variance estimator of \/W(ﬁ —B) is

~ N =
i Tyr-1
Z_LmN(éxi A% Xij
S 2 Tp-ly 1
Z=o7 lim N[ NX/RX, |

S=of[XIR7X, |

Var( ﬁ) is the right lower corner element of the above variance-covariance matrix 2. .

4.5.2 Derivation of X/R"'X,

Under the assumption of no interaction, the matrix R*remain the same as derived in 4.1.2

R_lzi[”n_ﬁ\]pn}{”@( n_r__p‘]nﬂ
1-r 1) %

where y =1+(n-1)r—np and
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p=y+pnp=1+(n-Lr+n(p-1)p.

Expanding elements in the brackets, we have

R—lzi |p®[ n_r_—p‘]nj|_£‘]pn|:lm®( n_r__p\]nﬂ
1-r Y ¢ Y

TP _aand 2=p
v @

For simplification, let

R :%{lp ®[1,-al,]+b[na-1]J,,}

The matrix X/ R™X, is a2 x 2 matrix with the following elements

Zall elements in R'1 Zelements in treatment columns

X/R'X, =
Zelements in treatment rows Zelements in both treatment columns and treatment rows

Let s be the sum of all elements in R™ and write s intermsof a,b,n,and r

s =$[ p(n-n’a)+ pznzb(na—l)}

Let t be the sum of all elements appear in both treatment columns and treatment rows

t :ﬁ[ p(nz-n’z’a)+ pznzﬁzb(na—l)]

We then can write

- s 7S
X;R7X, =
s t

Thus

(XIR'X,) =

1 t -7rS
st—z%s?|-zs s

2
The lower right element of the matrix X = o7 | X/ R X | is Var(ﬂ) = %1 Note that
— %
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t-7%s = ﬁ[ p(nz—n’z*a)+ p’n’z’b(na-1)-z°p(n-n’a)-zp’n’b(na-1)

_pnz(1-7)
~ 1-r

ot (1-1)

Thus, Var (,3’) = W

Therefore, when randomization takes place at the first level without interaction effect, the design

effectis 1—r.

4.6 Randomize at First Level with Interaction Effect
4.6.1 Estimate Var(f})
For a the j™ physician in the i center, suppose the patients are randomized such that zn

patients are in the treatment arm and (1 )n patients are in the control arm. Thus, the total

number of patients allocated to the treatment arm is T;=z Npn, and the number of patients

allocated to the control arm is T,=(1-z )Npn. The robust variance estimator of JN (ﬁ—ﬂ) can

be obtained by computing > :[XIV*Xi ]_1. The variance of the estimator Var(ﬁ) is the right

lower corner element of the above variance-covariance matrix 3. .
We consider two different scenarios where the interaction effects might be found: (1)
interaction between treatment and level three and (2) interaction between treatment and level

two.
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4.6.2 The Structure of V with Treatment x Level Three Interaction

The first scenario considers the situation where the treatment effect varies across different

centers. Denote the variance of the interaction as o

ct?

the total variance is now given by:
of =0, +0L+0. +og
Under mixed model theory, the structure of V can be written as follows:

V=1, ®U+J], ®T-1,®T where
U =block {[Im (0'82)+Jm (0;)],[In(l_ﬂ) (0§)+Jn(l_ﬂ)(0'§ﬂ}+\]n(of +O'§)

T=block{J, (0%), 3,0 r (%)} +3.(?)
To illustrate, consider the i™ center with two physicians, each physician has four patients.

Suppose the patients are randomized equally to the two treatment groups, the V matrix takes the

following form:

2 21 2 21 2 21 2 2]
O'T w :T T :U 1y :O'C O'c

2 21 2 21 2 20 2 2

10} oy |7 Tl v- 1o, o
2 2l G 2t a2
™ 70 loy @ |o, o, |V v

2 21 2 210 2 21.2 2
V= T T :_a) o :O‘C o, :U v
) 21 21 2 21 2 2
v v o, O¢ 1Oy 10} |7 T

2 2! 2 212 2 2 2
v v- o, o o o7 |7 T

2 21 2 20 2 21 2 2

o, O, ,VL v- T T o o

2 2 : 2 2 : 2 2 : 2 2

| O, O, |V ve T T o oy |

Where 7 =0 +0; , v* =0; + 0}

2 2 2 2
wand o° =0 +o, +oy.

There is no closed form for the right lower corner of the matrix 5= [XiTV’lxi T. Thus,

we will use the general formula specified in equation (4.1) to compute Var(ﬁ’).
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4.6.3 The Structure of V with Treatment x Level Two Interaction

The second scenario considers the situation where the treatment effect varies across different

2

o+ » the total variance is now

physicians. Denote the variance of the interaction aso
o =0l +0,+0; +0,
Under mixed model theory, the structure of V can be written as follows:

V:Ip®U+Jp®T—Ip®T where

U =block {[hﬁ (62)+3,.(ch )][Inh) (02)+3uen (a;)]} +3, (0l +07)

T:Jn(az)

c

To illustrate the above structure, consider center i with two physicians, each physician has four
patients. Suppose the patients are randomized equally to the two treatment groups, the V matrix

takes the following form:

r 2 I92 | 2 2| 2 2 | 2 2]
o; : T T : o, O, : o, o,
2 21 2 21 2 21 2 2
4 o; I T ™ o, o, 10, O,
_ e —— 4z d——— -
2 2 1 2 32 I 2 2 1 2 2
T T : o, : o, O, : o, o,
2 2 2 2 2 2 2 2
T o1 g o. |l o o. o o
V| oL TiZe_ e e ¢
= i ] 271
2 2 2 2, 2 92 1 2 2
o, o0, ,0., O, ,0; | 7 T
| | |
2 2 2 2 '32 2 2 2
o, o, :_O'C o, -Ir O'T_: T T
2 21 2 2 1 2 21 2 192
Uc O'C : O'C Uc : T T : UT
2 2 1 2 2 1 2 21 .2 2
_ac O-c | O-c ac | 2 v | O-T_

where 7? = +0; and § = o] +o} +07,.
There is no closed form for the right lower corner of the matrix X = [XiTV‘lxi ]71. Thus,

we will use the general formula specified in equation (4.1) to compute Var(,@’).
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Chapter 5

Power and Sample Size for Binary Outcome

In Chapter 4, we presented power and sample size formulas for three-level designs with
continuous and normally distributed outcomes. In practice, however, it is very common to
encounter experiments with correlated binary data. For example, consider a three-level design
medical trial in which patients are selected within physicians, and physicians are selected within
centers. Suppose the outcome is the presence or absence of a disease. The data from such study
are binary and are correlated in a twofold nested fashion: measurements on patients are
correlated within the same physicians, which in turn correlated within centers.

Earlier, when working continuous Gaussian data, we derived the variance formulas for
the estimated treatment effect based on linear mixed model theory. However, the vector of the
expected means in binary outcome is typically not modeled as a linear function of the
parameters. Thus, modification to the presented formulas for continuous data is required in order
to answer the same power and sample size questions for binary data.

Details of the modification will be provided in this chapter. First we will explain how
generalize linear mixed models can be applied to derive the power and sample size functions for
binary outcome. Next, we will show how the variance of the treatment difference will be

computed in light of this approach.
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5.1 Generalized Linear Mixed Models (GLMM) Approach

5.1.1 Basic Model

Consider a three-level CRT design in which patients are nested within physicians and physicians
in turn are nested within centers. Denote the binary outcome variable from the i center, j"

physician, and k™ patient as Y - Let N be the total number of centers, p be the number of

physicians in each center, and n be the number of patients visiting each physician (balanced
design). The total sample size is T=Npn.
The Generalized Linear Mixed Model is based on extending the fixed effect Generalized

Linear Model by including the random effects. The model takes the following form:

E(Yly)=9"(XB+Zy)=9"(n)=n
g(n)=Xp+Zy
where:
e Y isthe (T x 1) vector of the observed data

e p is the vector of the expected means of Y

e g(.) is a differentiable monotonic link function
e Xisa (T x m) fixed effects design matrix

e pisa(m x 1) vector of regression coefficients for the fixed effects
e Zisa (T x q) random effects design matrix.

e yisthe (qx1) vector of random effects, y ~ N (0,G)

e 1 is the linear predictor, that is,n=Xp+ Zy .
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Following GLMM theory, the variance of the observations conditional on the random

effects can be written as:

Var(Y|y)=AB

-1
where A =diag{a;} and B =diag {b" (6?)} = [896 (ﬂ)} . (See Chapter 3 for more details.)
mn

The unconditional variance takes the form:
V =Var(Y)=Var(p)+AB
V is not easy to specify because in the binary case p is not a linear function of f .

Solutions for GLMM depend on the form of the likelihood function. In many cases, it is
difficult to maximize this function since it involves T integrals over the q dimensional random

effects. Hence, techniques of numerical approximation are required to solve the problem.

5.1.2 Pseudo-likelihood Method

In order to derive the general form of the variance matrix V, we consider the application
of pseudo-likelihood, a linearization method that was tested and implemented in the SAS PROC
GLIMMIX procedure. Pseudo-likelihood maximizes the quasi-likelihood by iteratively
analyzing a linearized pseudo variable. The term “pseudo” is used because the likelihood

function maximized is a function of a pseudo variable, not of the original data. Here, the pseudo

variable is based on a first-order Taylor series expansion for g(Y) about p, which yields:

z=g(p)+(Y-p)B™
=Xp+Zy+(Y-p)B™
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This new model can be viewed as a linear mixed model with the new pseudo-observation

z and the new random error term (Y—p)B’l. The variance of z can be formulated as (Brown

and Prescott, 2006):
V,=ZGZ' +B"(AB)B™
V,=7ZGZ' +BA
The variance of this linear mixed pseudo model will be used to derive the sample size and
power formulas for binary outcomes.
To specify V, we need two pieces of information. The first piece ZGZ' relates to the
random effects in the model. As we will see in some explicit examples presented in the next
sections, the components of ZGZ' consist of: (1) the between level two and within centers

variance 0'5 , (2) the between level three variance o2, and (3) the variance of the interaction terms

when the interaction effect exists. The structure of ZGZ'" depends on which level randomization

takes place. The process of deriving ZGZ' for the binary response is the same with that of the

continuous response.

The second piece B™A refers to the within physicians and between patients variance of
the first level measures. Unlike the case of continuous outcomes, this variance is now a function

of the binary proportion and is not independent from the mean. Letting u be the probability of
“success” or the probability of observing a specific outcome and applying the logit link function,

it can be seen from Section 5.1.1 that A is simply an identity matrix and B™ is a diagonal matrix

with elements of ﬁ . We will see explicit examples of this in the next few sections.
u(l-pu
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Getting back to the three-level study design where the observed outcomes from the i
center, j™ physician, and k™ patient are binary variables Yii » Suppose the interest is to test the

difference between the two treatment effects. Let the probability of an event in the treatment

group be g and in the control group beg . The marginal distributions of vy, and the

corresponding mean and variances are as follow

Yy« ~ Bernoulli (x4 ) when y;, is in the treatment group

E(yijk | X ) = H
Var(yijk ) = H (1_:ut)
Yii« ~ Bernoulli (x, ) when y, is in the control group
E(yijk | X ) = He
Var(yijk ) =K (1_/4:)
Assuming the treatment effects are fixed and the model has no other covariates, i.e. m=2 and

p= (ﬂo,ﬂ)T . Under logit model we can write

__exp(f,)
He 1+exp(5))

eo(5+h)
Al exp(B,+B)

Thus, g =Ilog (%}—Iog( #e j which is the log odds ratio of the corresponding response

L 1-p,
probabilities.
The hypothesis of
H, s =,
L
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IS now equivalent to

H,: /=0 and
H,:f=b=0

Once the structures of V,. and of X, are defined, the sample size and power estimates

depend on the variance estimates of the fixed effects, which can be found by
~ N _l
var(B) = (Z XiTVZ‘ilxij
i=1
The asymptotic variance of \/W(,E’—,B) is determined by the right lower corner element

of the estimated variance-covariance matrix = =Var [«/W (ﬁ — B)}

The power to detect a difference of size d with a two-sided type | error rate of « can be

obtained by

N N
ta/2,§_d I~ +7:,§ _ta/2,§_d N\

Var(ﬂ) Var( )

where T, . is the cumulative distribution function of the t-distribution with & degrees of freedom

power =1-7;,

and t,, . is the 100/2 % percentile from the t-distribution with & degrees of freedom. The

value of & depends on the analysis method and the level where randomization takes place.

It can be seen from the above equation that the most important step to determine power is

the computation of the term Var(/}), which is the lower right hand corner of the estimated
variance-covariance matrix % . Since the structure of = :@[m(ﬁ—ﬁﬂ depends on the study

design, the next following sections are devoted to explain how to compute S in particular cases
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for binary outcomes depending on which level random assignment is performed and whether or

not an interaction is taken into account.

5.2 Randomize at Third Level

Assume that the total N centers are randomized such that 7 N centers are in the treatment
arm and (1- )N centers are in the control arm. Thus, the number of patients allocated to the
treatment arm is T;=zNpn, and the number of patients allocated to the control arm is

T,=(1-)Npn. Furthermore, let the probability of an event in the treatment group be g and in
the control group be 4. .

Since randomization occurs at the center level, the covariate matrix X, and the variance
of the pseudo variable V,, depend on to which treatment group a particular center is allocated.

Denote the covariate matrix X, and the variance matrix of the pseudo variable V,, for the i"”

center. The robust variance estimator of \/W(ﬁ —[5) is
Z=limN (Zl XiTVZﬁXij
£= lim N[Nz (XV,'X, )+ N (1-2)(X,V; X, )|

~

£ [ (XX )+ (1-m) (XX, )|

If the i"" center is randomized into the treatment group, we have
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If the i center is randomized into the control group, we have

VZi:VZC=Ip®( In+a§JnJ+aprn

M (l_:uc)
To illustrate, consider a simple experiment with two centers, each center has two
physicians, and each physician has two patients. Suppose that the first center is randomized into

the treatment group and the second center is randomized into the control group. Furthermore,

denote the total variance for each treatment group as o7, and o2, , then

2 2 2
Otreat = O¢ +O—p +

H (1_/4)

2

2 2
Gcontrol - Gc + Gp +

He (1_lut:)

The structure of X, and V,, for the first center (treatment) are

2 2 2 2 2
11 Olreat O + O-p O, O,
2 2 2 2 2
X — 11 and V. = 0, +t0,  Opea o, o,
t 11 Zt T 2 2 2 2 2
O, O, Olreat O, +O_p
2 2 2 2 2
11 O, O, O +O_p Olreat
The structure of X, and V,, for the second center (control) are
2 2 2 2 2
1 O Jcontrol O-c +O—p Gc Jc
2 2 2 2 2
X = 1 O d V. = Jc +Jp O-control Gc Jc
t 1 O an Zc 2 2 2 2 2
O-c O-c O-control O_c +O—p
2 2 2 2 2
1 O O-c O-c O-c +O_p O_control

The variance of the estimated treatment effect Var(ﬁ) is the right lower corner element of the

variance-covariance matrix ¥ = [ﬂ(XtTVZ‘ﬂXt )+(1-7)(X." VX, )T
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5.3 Randomize at Second Level without Interaction Effect

Assume that for the i center, the physicians are randomized such that 7z p of them are in
the treatment arm and (1-)p of them are in the control arm. Thus, the number of patients
allocated to the treatment arm is T,;=7x Npn, and the number of patients allocated to the control
arm is T>=(1- )Npn. Furthermore, let the binary proportion for the treatment group be g, and
for the control group be x, and assume that there is no interaction effect between treatment and

center, i.e., the treatment works the same in every center.

Since randomization takes place at the second level, all X;,’s are the same and all V,,’s

are the same across the N centers. Thus

N—>o

-1
S =N lim (i XiTVZ‘inj = (X,"V,x,) "
i-1

In this study design, the covariate matrix X, for the i™ center is a pn x2 matrix. The first

column of this matrix contains all ones, whereas the second column contains ones in the first

7 pn rows, and zero in the remaining (1- 7z )pn rows. The structure of V,, can be written as

V,, =block (A, B)+J,, (c7), where

A=|ﬂp®(ﬁln+‘]n(o_§ﬂ

1-

1
B=1 | ———I,+J, o2
(:-7)p [ﬂc(l—ﬂc) ( p)]

For example, consider a simple experiment in which the i" center has two physicians, and

each physician has two patients. Suppose the first physician in the center is randomized into the
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treatment group and the second physician is randomized into the control group. The structures of

X; and V,, for this particular center i'" take the following form

2 2 2 2 2
11 Olreat O, +O—p O, o
2 2 2 2 2
X - 11 and V. = Oc+0, O o, o,
i l O Zi 2 2 2 2+ 2
Jc O-c Gco ntrol O-c Gp
2 2 2 2 2
1 O Jc O-c O-c + O-p O-control
1
where ol =0 +0.+———— and
treat c p (1_ )
Hy Hy
2 2 2
O control — O¢ +O—p + 1
/uc( _:uc)

5.4 Randomize at Second Level with Interaction Effect

The distinction between randomization at second level with interaction and without
interaction is that a new variance term representing the interaction between treatment and center
need to be added to the model. Although the covariate matrix X, defined in Section 5.2 remains
to be the same, the existence of the interaction term cause some changes in the structure of the

variance matrix V,, . Denote the variance of the interaction as o, V,, now takes the following

form

C

V,; =block (A, B)+J,(5?) , where

1
A= |ﬁp®(mln+~]n(0’s)}+\]ﬁpn(o—;)
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For example, consider a simple experiment in which the i center has four physicians,
and each physician has two patients. Suppose the first two physicians in the center are
randomized into the treatment group and the next two physicians are randomized into the control

group. Furthermore, suppose that the treatment effect varies across different centers, then for the

11
11
11
th . 11
I" center, we can write Xi =
10
10
10
_1 O_
and V,, can be written as
_O-t?reat o v? v? O'cz O',:2 O'C2 O'C2 ]
o’ O-tzreat v? v? O-cz (o) 02 o 02 o 02
v’ v O-tieat o O-cz O-cz (o) 02 o 02
wlv v P e d
O O O¢ O O control w v v
O-u:2 O-cz O-cz O-c2 wZ O-czontrol Uz Uz
O-cz O-CZ O-Cz 0-02 UZ UZ O-czontrol wz
- O-cz O-CZ O-cz O-Cz UZ UZ a)z O-czontrol a
Where
O-tzrea'( = O-c2 +O-;23 + O-czt t—
Hy (1_ Hy )
O-czontrol = O-c2 + O-§ + O-czt +—
He (1 — H )

2 _ 2 2
1Y _O-c+o-ct

2 2 2 2
0" =0, +0,+0,
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5.5 Randomize at First Level without Interaction Effect

Assume that there is no interaction effect, i.e., the treatment works the same in every
center and every physician. For a the jth physician in the i" center, suppose the patients are
randomized such that 7 n patients are in the treatment arm and (1- 7 )n patients are in the control
arm. Thus, the total number of patients allocated to the treatment arm is T;=z Npn, and the
number of patients allocated to the control arm is T,=(1- 7 )Npn. Furthermore, let the probability

of an event in the treatment group be g and in the control group be 4. Since randomization

takes place at the first level, X, and V,, are the same across all centers. Thus

~ N 71 —
£=N lim (Zl XiTVZinJ = (X,"V,x,) "

The covariate matrix X, for the i" center is a pn x2 matrix. The first column of this matrix

contains all ones, whereas the second column contains ones in the z pn rows corresponding to
those patients allocated to the treatment group, and zero in the (1—z )pn rows corresponding to
those patients allocated to the control group.

The structure of V,, can be written as

V,; =1, ®|block(A,B)+J,(c? +52)|+J,®C-1,®C, where

b

1
B=|—— |1
(,Uc (1—ﬂC)J (i)

C=Jn(02)
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For example, suppose the i center has two physicians and each physician has four
patients. Suppose the first two patients are randomized into the treatment group and the next two

patients are randomized into the control group. Then, for the i"" center, we have

L
O O R, P OO R, K.

And the structure of V, is

2 2 2 2 2 2 2 2
O-treat T 2 2 O-c O-c O-c O-c
2 2 2 2 2 2 2 2
2 O-treat T 2 O-c O-c O-c O-c
2 2 2 2 2 2 2 2
2 T O-control 2 O-c O-c O-c O-c
2 2 2 2 2 2 2 2
V _ 2 T T O-control O-c O-c O-c O-c
Zi 2 2 2 2 2 2 2 2
O-c O-c O-c O-c O-treat T 2 2
2 2 2 2 2 2 2 2
O-c O-c O-c O-c 2 O-treat 2 2
2 2 2 2 2 2 2 2
O-c O-c O-c O-c T T O-control 2
2 2 2 2 2 2 2 2
L O-c O-c O-c O-c T T T O-control
Where
2 _ 2 2
Otreat = O¢ + O-p + 1
Hy ( - /ut)
2 _ 2 2
O control — O¢ + O-p + 1
M ( — M )

2_ 2 2
" =0, +0,
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5.6 Randomize at First Level with Interaction Effect
We consider two different scenarios where the interaction effects might be found: (1)
interaction between treatment and level three and (2) interaction between treatment and level

two.

5.6.1 The Structure of V,, with Treatment x Level Three Interaction

Under the same randomization scheme, what if the treatment effect varies across
different centers? In this situation, an interaction effect between treatment and center should be
taken into account.

Since the presence of the interaction effect does not lead to any change on covariate
matrix X, the difference in the computation of T relies solely on the modification in the
structure of V.. This modification can be done by introducing a new variance term denoted by

o’. V,. now takes the following structure:

V, =1, ®|block(A,B)+J, (0 +02)]+J,®C-1,®C

1
] RRGd
1
e Ll

C=bIock(JM(a;),Jn(lfﬁ)(aft))+Jn(JCZ)
For a simple example with two centers, each center has two physicians, and each

physician has four patients: two are in the treatment group and two are in the control group. We

then have:

www.manaraa.com



84

r n M 2 2 2 2 2 2 2 2
11 Opeat @ T T v v o o
2 2 2 2 2 2 2 2
11 O°  Opewe T T v v o o
2 2 2 2 2 2 2 2
1 O T T O-control w O-c O-c v v
2 2 2 2 2 2 2 2
X = 1 O and V.. = T T 2 O-control O-c O-c v v
i = 1 1 /. 2 2 2 2 2 2 2 2
L 1y O, O, O'ireat w T T
2 2 2 2 2 2 2 2
11 v v o, o, O°  Opeye T T
2 2 2 2 2 2 2 2
1 O O-c O-c v v 2 T O-control @
2 2 2 2 2 2 2 2
_l O_ L O-c O-c v v 2 T @ O-control_
Where
2 _ 24521 0% 4 1
Otreat = O¢ O-p Oy 1
/ut( _Iut)
1
2 2 2 2
Gcontrol - Gc +Gp + O-ct + 1
#e (1= 1)

2 2 2
" =0, +0,
2 2 2
V" =0, +t0oy,

2 2 2 2
o’ =0, +0,+0y,

5.6.2 The Structure of V,, with Treatment x Level Two Interaction

Now, let us consider another scenario when the treatment effect varies across different
physicians. In this scenario, an interaction effect between treatment and physician is required.

Again, the presence of the interaction effect does not lead to any change on covariate
matrix X, and the difference in the computation of T only depends on the modification in the
structure of V,, . This modification is done by the introduction of the variance of the interaction
term reflecting the interaction between physician and treatment afn. V,, now takes the following

structure:
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For a simple example with two centers, each center has two physicians, and each

physician has four patients: two are in the treatment group and two are in the control group. We

then have
M 7 P 2 2 2
11 ol 9 T T
2 2 2 2
11 g Olreat T T
2 2 2 2
1 O T T O-control ‘9
2 2 2 2
X _ 1 0 and V _ T T ‘9 O-control
i 1 1 Zi 2 2 2 2
O-C O-C O-C O-C
2 2 2 2
1 1 O-C O-C O-C O-C
10 o ol o o’
1 0] ol o o’ o’
where
2 2 2 2 1
Oireat — O¢ +O'p+0'pt+ 1
(1= 1)
2 2 2 2 1
O control — O¢ + O-p + O-pt + 1
M ( —H )

2_ 2 2
" =0, +0,

2 2 2 2
$" =0, +o,+oy,

o N oql\_, oq,\_,

9

N

L9

Olreat

2

o, o
o, o,
o, o
ol o;
9 7°
O T
T ? O-czontrol
r° 9

t\‘N l\‘N oqN oq,\_, oq,\_, oq,\_,
|

2

N

Q

control _|
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Chapter 6

Simulation Study

As presented in Chapters 4 and 5, our power and sample size calculations are based on
asymptotic theory, particularly the derivation of the variance of the treatment effect. It is
reasonable to suspect that a minor variation in the approach proposed for the intervention
evaluation can cause substantial difference in power and sample size estimates. To assess the
accuracy of our methods, we conducted a simulation study designed to verify sample size and
power calculations. The results showed that the theoretical power estimates from our formulas
are consistent to the empirical power computed from the simulated data.

This chapter explains the process that was used to generate the data for the different
designs presented in Chapter 4 and Chapter 5. The simulation results will be then presented and

discussed.

6.1 Simulation Design

We simulated data for cluster randomized trials with three-level design under the
assumption of balanced sample sizes, i.e. the numbers of subjects per each cluster are equal
across all clusters. For example, if the trial includes patient nested within physician and
physician nested within center, then the numbers of patients for each physician are the same and
the numbers of physicians for each center are the same across all centers. In all the settings, we
assumed a completely randomized design that involved two arms: a treatment arm and a control

arm. We considered six different scenarios for each type of outcomes: continuous and binary.
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The six scenarios are dictated by which level the allocation of treatment takes place and whether
there is an interaction effect or not. They include (1) randomize at level three, (2) randomize at
level two without interaction, (3) randomize at level two with interaction, (4) randomize at level
one without interaction, (5) randomize at level one with interaction between treatment and level
three, and (6) randomize at level one with interaction between treatment and level two.

To verify the accuracy of the derived power and sample size functions, we compared the

theoretical power given by our proposed formulas (denote by 7 ) to the empirical power given

by the simulated data (denote by?) . The theoretical power was computed using SAS PROC
IML, which specifies the forms of the variance matrices and yields the power based on our
theory. The empirical power was obtained by fitting the simulated data sets with linear mixed
models using SAS PROC MIXED for continuous outcome, and generalized linear mixed models
using SAS PROC GLIMMIX for binary outcome. The p-values for testing the null hypothesis of
no treatment effect were retained after each the model fitting process. Denote the p-value by

p, for the ™ repetition of the simulated data with a total of R repetitions, the empirical power

7 can be calculated by

>(p <)

R

7 =

For comparison, we estimated the 95% confidence intervals for the empirical power and
recorded the number of iterations where the confidence interval covered the theoretical power. In
addition, the absolute difference between the two values of powers was also computed in order to
assess the discrepancy between the theoretical power and the empirical power. The simulation
methods are slightly different between the continuous outcome and the binary outcome. We will

discuss the simulation processes for the two types of outcomes separately.
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6.2 Simulation for Continuous Data

For continuous outcomes, the following parameters were pre-specified:
e The desired theoretical power 7~
e The two-sided significance level «

e The proportion of allocation into treatment =

e The variances between level three o, the variance between level two o,, and the
variance between level one o?.
e The variances of the interaction effect between treatment and level three o, or between
treatment and level two o, (if the interaction at these levels exist).
The following parameters were allowed to vary
e The intervention effect z,, and control effect x,

e The sample sizes in each level c, p, and n

Our simulation programs were designed in such a way that the results can be collected
for any chosen combination of the above parameters. In this report, we chose to fix the desired
power 7 =0.75 and « =0.05. However, these two parameters can be set at different values.

To chose the values for the ICC, we looked at recent publications on sample size
estimation for three-level designs in healthcare experiments. Our review suggested that the

intraclass correlation on level three (o) is much smaller than that of level two (r). For example,

in a recent study conducted by Heo and Leon (2009), the researchers examined a combination of

p=0.01, 0.05, 0.10 and r=0.4, 0.5, 0.6. Taking the first combination of pand r, together
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with a total variance of o =1, our pre-specified variance parameters were o’ =0.01,
o;=0.39, 6/ =060, o; =0.05, o7, =0.02.

The differences between intervention and control effects were derived from the
corresponding sample sizes and the desired power of 0.75 from our theoretical formulas. Since
the power is set at a fixed value and the variances are also set at the pre-specified values, the
difference in treatment effect is a function of the variances and the selected power.

The sample sizes in each level were varied amongst large, medium, and small sizes.
These sample sizes again were chosen based on common sample sizes reported from the

literature of CRT. More specifically, we considered the following:

e Sample sizes for level three ¢c=10, 20, 30
e Sample sizes for level two: p=4, 8, 12

e Sample sizes for level one n=10, 20, 30

This 3x3x3 factorial design yielded a total of 27 combinations for each set of parameters.
In order to allow for a workable compromise between the magin of error and the number of
repetitions, we chose a margin of error of 0.035. With this, we arrived at a total number of
repetitions of 784 data sets for each combination. Thus, altogether we had 21,168 sets of data
across the six different scenarios with continuous outcomes.

For each different scenario, we performed different steps to simulate the corresponding
data sets. Details of the steps as well as the simulation algorithms will be described in the next

paragraphs.
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Case 1: Randomization at Level Three—Continuous Outcome

o Generate X; ~ N (0!

c

) independently, where i=1,2,..., zc for the treatment
e Generate X, ~N (ym,,of) independently, where i=zc+1, zc+2, .., ¢ for the control
e Foreach X;, generate Y, ~ N(X;,07 ) independently, where j=1,2,..., p

e Foreach Y;, generate Z, ~ N(Y;,07) independently, where k=1,2,...,n

The simulation algorithm for case 1 is illustrated in Figure 6.2.1

Figure 6.2.1: Simulation Algorithm

Randomize at Level Three—Continuous Outcome

{ Kix ~ N(Mmof) }‘WL

Control
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Case 2: Randomize at Level Two without Interaction—Continuous Outcome

e Generate X; ~N(0,07)
e Foreach X;, generate Y; ~N (Xi -l-,um,as) independently, where j=1,2,..., zp for the

treatment group and generate Y, ~ N(Xi +ycm,a§) independently, where j=zp+1,
ZP+2,...,pinthe control group

e Foreach Y;, generate Z, ~ N(Y;,07) independently, where k=1,2,...,n

The simulation algorithm for the case 2 is described in Figure 6.2.2

Figure 6.2.2: Simulation Algorithm

Randomize at Level Two without Interaction —Continuous Outcome

Level 3
X ~N(0,07)
W Treat ; Control [
{ Ym~N(X+MH,oﬁ)f Level 2 =L Yan~N(X+%n’Of))}

A 4 A 4

{ Z, ~ N(Ym,oez) } Level 1 { Zan ~ N (ch,aj) }
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Case 3: Randomization at Level Two with Interaction—Continuous Outcome

e Generate X; ~N(0,07) independently

e Generate the treatment effects s, ~N ( ym,a;)for the treatment group and
#e ~ N (g, 0% ) for the control group.

e Foreach X;, generate Y; ~N (Xi +;¢T,a§) independently , where j=1,2,..., zp for the

treatment group and generate Y; ~N (Xi +,uc,0"2)) independently, where j=zp+1,
7p+2,..., p for the control group
e ForeachY;, generate Z ~N (Yj,aj) independently, where k=1,2,...,n

The simulation algorithm for the case 3 is described in Figure 6.2.3

Figure 6.2.3: Simulation Algorithm

Randomize at Level Two with Interaction —Continuous Outcome

Interaction Level 3 Interaction )
X - N (O 0_2) ...................................... ll'lC -~ N (/’lctrl y GCt)
1~

: Treat Control
{ for N (X 00) 1% Level 2 j Yar =N (X +11r,07) }

| /
2] et > [ 2Nt
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Case 4: Randomize at Level One without Interaction—Continuous Outcome

e Generate X; ~N(0,07)

e ForeachX;, generate Y, ~ N(X;,07 ) independently, where j=1,2,...,p

e For eachY,, generate Z, ~ N (Y, +u,,0.) independently, where k=1,2,..., zn for the

e

treatment group and generate Z, ~ N(Yj+ ycm,aj) independently, where k=zn+1,

zn+2, ..., nin the control group

The simulation algorithm for the case 4 is described in Figure 6.2.4

Figure 6.2.4: Simulation Algorithm

Randomize at Level One without Interaction —Continuous Outcome

Level 3
X ~N(0,07)

Level 2
Y=N(X.cf)
Treat

< Level 1 contel j Loy ~ N(Y + g T )

l VL ctrl

L~ N(Y"'Mmaf)

—
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Case 5: Randomize at Level One with Treatment xLevel Three—Continuous Outcome
e Generate X; ~N(0,07) independently
e Generate the treatment effects s, ~N ( ym,a;)for the treatment group and
#e ~ N (g, 0% ) for the control group.
e ForeachX;, generate Y, ~ N(X;,07 ) independently, where j=1,2,...,p
e For eachY,, generate Z, ~N(Y;+ 4,07 independently, where k=12,..., zn for the

treatment group and Z, ~ N (Yj +yc,a§) independently, where k=zn+1, zn+2,..., n

in the control group

The simulation algorithm for the case 5 is described in Figure 6.2.5

Figure 6.2.5: Simulation Algorithm

Randomize at Level One with Treatment x Level Three —Continuous Outcome

Interaction Interaction
Level 3
,LtT'*N(,um,o-czt) .............................. X"'N(O,O‘CZ) .................................... ﬂc~N(ﬂctr|’O_c2t)

A 4

Level 2

Y ~N(X,0?)
A
Zm _ N(Y +,Ur,0'§) }%Treat Level 1 Control J Z. ~N (Y +ﬂc’Gez)
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Case 6: Randomize at Level One with Treatment xLevel Two—Continuous Qutcome

e Generate X; ~N(0,07) independently

e ForeachX;, generate Y, ~ N(X;,07 ) independently, where j=1,2,...,p

o Generate the treatment effects 44 ~N ( ym,aﬁt)for the treatment group and
te ~ N (9, 0% ) for the control group.

e For eachY;, generate Z, ~N(Y;+;,07) independently, where k=1.2,..., zn for the

treatment group and generate Z, ~N (Yj +,uc,a§)independently, where k=zn+1,
zn+2, ..., nin the control group

The simulation algorithm for the case 6 is described in Figure 6.2.6

Figure 6.2.6: Simulation Algorithm

Randomize at Level One with Treatment x Level Two —Continuous Outcome

< X E(x?o?af) >

Interaction Interaction
) Level 2 )
NT ~N (ILL(I’I , Gpt ) Y ~N ( X , 0_5 ) /[C ~N (/Uctrl y th )
Treat 4 Control

By e

'L ctrl
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6.3 Simulation for Binary Data

Similar to the continuous cases, the following parameters were pre-specified for binary data:
e The desired theoretical power 7~
e The two-sided significance level «

e The proportion of allocation into treatment =

e The variances between level three &7, the variance between level two aé
e The variances of the interaction effect between treatment and level three o, or between

treatment and level two afn (if the interaction at these levels exist).

The following parameters were allowed to vary

e The probability of an event g, in the treatment group and , in the control group

e The sample sizes in each level c, p, and n

Again, we chose to fix the desired power 7 =0.75 and « =0.05. The pre-specified

variance parameters wereo; =0.01, o7, =0.39, o =0.05, o7 =0.02. Setting the probability

of the event in the control group as x, =0.7, the differences between intervention and control

probabilities were computed from the corresponding sample sizes and the desired power of 0.75
given by the theoretical formulas. The sample sizes in each level were varied amongst large,
medium, and small sizes. We considered ¢=10, 20, 30 ; p=4, 8, 12; and n=10, 20, 30, which
yielded a total of 27 combinations for each set of parameters. For a margin of error of 0.035, we
arrived at a total number of repetitions of 784 data sets for each combination. Thus, altogether
we had 21,168 sets of data for across the six different scenarios with binary outcome.

Following the general linear mixed models approach, we assumed the random effects in

level three and level two are normally (Gaussian) distributed. To generate binary data, we
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followed a model that linearly relates level one to the higher level cluster effects by way of the

logit of the probabilities. Details for the six cases are described below.

Case 7: Randomize at Level Three—Binary Outcome

e Generate X, ~ N(,um,af) independently, where i=1,2,..., zcfor the treatment group

and X; ~ N (4,07 ) independently, where i=zc+1, 7¢+2, ..., ¢ for the control group
e Foreach X;, generate Y, ~ N(X;,07) independently, where j=1,2,..., p

e Foreach Y, compute p. =1/(1+e ) and generate Z, ~ Bernoulli( p.) independently,
i i k ]

where k=1,2,...,n

The simulation algorithm for case 7 is illustrated in Figure 6.3.1

Figure 6.3.1: Simulation Algorithm

Randomize at Level Three—Binary Outcome

Treat Control

N
J
)
J

xdrl - N(/uttrl ’Gf)

\ 4

Y1 ~N(X,0%)

ctrl ' ™~'p

p, =1/ (1+e‘Ym) Pt =1/ (l+e‘Y°"' )

Zc(rl - BGITDU”I( pctrl)
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Case 8: Randomize at Level Two without Interaction—Binary Outcome
e Generate X; ~N(0,07) independently
e Foreach X;, generate Y; ~N (Xi -l-,um,as) independently, where j=1,2,..., zp for the
treatment group and generate Y; ~ N(Xi+,uctr|,a§) independently, where j=7zp+1,
7ZPp+2,...,pinthe control group
e Foreach Y;, compute p; =1/(1+ e'Y") and generate Z, ~ Bernoulli( pj) independently,

where k=1,2,...,n

The simulation algorithm for case 8 is described in Figure 6.3.2

Figure 6.3.2: Simulation Algorithm

Randomize at Level 2 without Interaction —Binary Outcome

Level 3
X ~N(0,07)

Treat Control [
Y ~N(X+44,0%) o Level 2 d Y,

)
B, :1/(1+e_Ym) Py =1/(1+€‘ch )
Z,, ~Bemoulli( p,, ) Zyy ~Bemoulli( py, )

ctrl

y

H ~N(X+Hm’0§)
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Case 9: Randomize at Level Two with Interaction—Binary Outcome
e Generate X; ~N(0,07) independently
e Generate the treatment effects s, ~N ( ym,a;)for the treatment group and
#e ~ N (g, 0% ) for the control group.
e Foreach X;, generate Y, ~ N(Xi +;¢T,a§) independently, where j=1,2,..., zp for the

treatment group and generate Y, ~ N(Xi+yc,a§) independently, where j=7zp+1,

7p+2,..., pfor the control group

e Foreach Y, compute p, :1/(1+ e’Y") and generate Z, ~ Bernoulli( p,

) independently,

where k=1,2,...,n

The simulation algorithm for the case 9 is described in Figure 6.3.3

Figure 6.3.3: Simulation Algorithm

Randomize at Level 2 with Interaction —Binary Outcome

Interaction Interaction

Level 3
__________________________________ By e—

Treat Control

(et o >—{ o)
l J

Z,, ~ Bernoulli( p,,) z

ctrl - BernOU”i ( pctrl )
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Case 10: Randomize at Level One without Interaction—Binary Outcome

e Generate X; ~N(0,07) independently
e ForeachX,, generate Y, ~ N (X, ) independently, where j=1,2,...,p
e Foreach Y;, compute p,, =1/(1+ e'YJ"“") and p,, =1/(1+ e‘Yi"’“")

o Generate Z, ~ Bernoulli(p,,) independently, where k=1,2,..., zn for the treatment

group and generate Z,, ~ Bernoulli( p,,) independently, where k=zn+1, zn+2,..., n

in the control group.

The simulation algorithm for case 10 is described in Figure 6.3.4

Figure 6.3.4: Simulation Algorithm

Randomize at Level 1 without Interaction —Binary Outcome

Level 3
X ~N(0,67)
A
Level 2
Y ~N(X,q?)

Treat A Control

p, =1/ (1+e‘Y‘““) Level 1 P =1/ (1+e_Y_%m)
Zm ~Bem0U||l(pm) Zdrl "‘BeerU”i(pcm)
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Case 11: Randomize at Level One with Treatment xLevel Three—Binary Outcome

e Generate X; ~N(0,07) independently

e Generate the treatment effects s, ~N ( ym,a;)for the treatment group and
#e ~ N (g, 0% ) for the control group.

« ForeachX;, generate Y, ~ N(X,o?) independently, where j=1,2,...,p

e ForeachY,, compute p,, :1/(1+ e’Yi’”T) and p,, =1/(1+ e’Y""‘C)

e Generate Z, ~ Bernoulli(p,) independently, where k=1,2,..., zn for the treatment

group and Z,, ~ Bernoulli( p,,) independently, where k=zn+1, zn+2,..., n in the

control group

The simulation algorithm for case 11 is described in Figure 6.3.5

Figure 6.3.5: Simulation Algorithm

Randomize at Level One with Treatment x Level Three —Binary Outcome

N ( 2) Level 3 N( 2)
L ~ JTAY el ) E— X ~N (O, 0'02) te ~ Nt 02
Interaction Interaction \
v
Level 2
Y ~N(X,02)
Treat A Control
N Py =1/ (1+e7V 7%
P =1/ (1+e ! ”T) Level 1 ; ( )

Z . ~ Bernoulli( p,,

ctrl

7, ~Bemouli(p,
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Case 12: Randomize at Level One with Treatment xLevel Two—Binary Outcome

We performed the following:

e Generate X; ~N(0,07) independently

e ForeachX;, generate Y, ~ N(X,o?) independently, where j=1,2,...,p

o Generate the treatment effects 44 ~N (ym,a;)for the treatment group and
te ~ Ny, 0% ) for the control group.

e ForeachY,, compute p, :1/(1+ e’Yi’”T) and py, =1/(1+ e’Y""‘C)

e Generate Z, ~ Bernoulli(p,,) independently, where k=1,2,..., zn for the treatment

group and Z,, ~ Bernoulli(p,,) independently, where k=zn+1, zn+2,..., n in the

control group
The simulation algorithm for case 12 is described in Figure 6.3.6
Figure 6.3.6: Simulation Algorithm

Randomize at Level One with Treatment x Level Two —Binary Outcome

Level 3
X ~N(0,62)
Interaction A Interaction
Level 2
................................... Y ~N (X ,O'ﬁ]

A

Treat Control

B, =1/(1+e") Level 1 o =1/ (1+677 )

Ztrt -~ Bemou"I( p[rt) Zctrl - BernOU”i ( pctrl )
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6.4 Simulation Results

The main question addressed by the simulation study was that given a set of parameters,
how well does the power from the derived sample size formulas agree with the empirical power
generated by the simulation experiment. To answer this question, we examine the following
results.
6.4.1 Simulation Results for Continuous Outcome

Table 6.4.1 shows the mean, minimum, maximum, and the standard errors of the

empirical powers where results are combined for the six scenarios for continuous outcome.

Table 6.4.1: Summary of Simulation Results for Continuous Outcome

Design Level 3 Level Level2with Levell Level 1 with  Level 1 with
scenarios 2 Interaction Treat x Level Treatx Level 2
Mean 0.75 0.75 0.72 0.75 : 0.73 0.73
Min 0.67 0.70 0.65 0.67 0.68 0.69
Max 0.85 0.79 0.77 0.82 0.76 0.77
SE 0.0065 0.0051 0.0061 0.0055 0.0042 0.0039

Tables B.1 to B.6 in Appendix B present in more detail the specified sample sizes for the

three levels, the empirical power 7 , and the absolute differences between the empirical powers
and the theoretical powers for the continuous case. These tables show that in most of the cases
the values of theoretical power are consistent with those of the empirical power regardless of the
sample size combination.

It is noticed that in the cases with interaction, although the empirical powers were

underestimated, most would consider the difference negligible. The rational for this is that Proc
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MIXED tends to overestimate the interaction variance components, which in turn lowers the
power because the estimated variance of the difference is larger.

Overall, the results for continuous data showed that the empirical powers varied around
the theoretical powers at all sample sizes combination. In all combinations of the sample sizes
considered, the theoretical the powers were covered by the 95% confidence intervals of the
empirical powers in 93.8% (152/162) of the cases. This result is consistent for cases with and
without interaction. The absolute differences between the empirical powers and the theoretical
power were fairly small, with an average of 0.025 (SE=0.0284). Thus, the results for continuous
data indicate that the power based on our derived formulas is nearly identical to the empirical

power based on the simulated data.

6.4.2 Simulation Results for Binary Outcome

Table 6.4.2 displays the mean, the minimum, and the maximum, and the standard errors

of the empirical powers for all the six different scenarios for binary outcome.

Table 6.4.2: Summary of Simulation Results for Binary Outcome

Design Level 3 Level2  Level 2with Level Level 1 with Level 1 with

scenarios Interaction 1 Treat x Level Treatx Level 2
3

Mean 0.75 0.74 0.73 0.76 0.73 0.73

Min 0.70 0.66 0.65 0.68 0.66 0.70

Max 0.84 0.85 0.78 0.80 0.77 0.77

SE 0.066 0.0074 0.0056 0.0053 0.0052 0.0043

www.manaraa.com



105

Tables B.7 to B.12 in Appendix B present in more detail the specified sample sizes for

the three levels, the empirical power?, and the absolute differences between the empirical
powers and the theoretical powers for the binary case.

Similar to the continuous case, the empirical powers were lower than the theoretical
powers in the cases with interaction. This is due to the overestimate of the interaction variance
components caused by PROC GLIMMIX.

Overall, the results for binary data showed that the empirical powers are consistent with
the theoretical powers at all sample sizes combination. In combination of the sample sizes
considered, the theoretical powers remain within the 95% confidence intervals of the empirical
powers in 87.0% (141/162) of the cases. The absolute differences between the empirical powers
and the theoretical powers were fairly small, with an average of 0.025 (SE=0.0202). Thus, the
simulation results for binary data also indicate that the power based on our derived formulas is

nearly identical to the empirical power based on the simulated data.
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Chapter 7

Application

Up to this point, we have discussed the issues of sample size and power calculation for
CRT with three-level designs. We derived the relevant formulas for important scenarios where
random assignment takes place at different levels. However, these formulas are not easy to use
since some are not straightforward and explicit. To make the connection between the theoretical
methods and their practical applications, we composed a SAS program that allows the user to
compute power and sample size using our methods. First, we will describe the basis of the
program and its algorithm. Next, we will present a few hypothetical examples where the program

can be used to answer practical power and sample size questions.

7.1 The User-Interface Program
To put theory into practice, we developed a macro program using the SAS software
(version 9.2; SAS Institute Inc, Cary, North Carolina). The goals of the program are:
(1) To compute sample size and power using the derived formulas.
(2) To serve as a tool that enables users to input their own parameters and receive
customized output.
(3) To allow users to explore power and sample size results in different design

scenarios.
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The program consists of three sections. The first section uses SAS %WINDOW, which is
part of the macro language included in the Base SAS system. The %WINDOW statement
provides the functionality of prompting for user input, placing the input into macro variables,
and resolving them to generate program code. Once defined, the macro variables remain in effect
until the SAS session is terminated or until the user redefines them through additional input. In
this program, the %WINDOW statement presents several groups of input fields. These groups
include different design scenarios (depending on the user’s choices), instructions for the next
steps, and warnings about an input error.

The second section of the program consists of a series of macros, which are used to
compute power or sample size for the six design settings for two types of outcomes, continuous
and binary, as described in Chapter 4 and Chapter 5. Thus, altogether there are twelve different
design scenarios. For each different design, four macros were written to compute (1) power, (2)
sample size of level three, (3) sample size of level two, and (4) sample size of level one. The
computations are carried out in SAS PROC IML based on the derived formulas. In addition, a
few macros were composed to count the number of missing entries or to reset all macro variables
once the users chose begin a new calculation.

The third part of the program put everything together. This section called for the
information provided by the first section, ran the calculation from the macros in the second
section, and provided the results using the %DISPLAY statement. To allow for a variety of
reporting capabilities, the program followed an algorithm that depended on the user’s input. A

description of this algorithm is shown in Figure 7.1.
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Figure 7.1: Algorithm for the User-Interface Program
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A 4
Step 1

None was selected

A 4

Error! One option
must be selected!

What is your main outcome?

e Continuous Both were selected
e Binary

\ 4

Error! Only select
one option!

h 4
Step 2

Please select the following designs
(randomizing at):

e Level three None was selected Error! One option
Level two must be selected!

Level one

Level two with interaction
Level one with interaction
between treatment and level 3 More than one

e Level one with interaction were selected Error! Only select
between treatment and level 2 one option!

A 4

A 4

A 4

Step 3
None was selected Error! One option
Which of the following do you wish to »{ must be selected!
compute?
e Level 3 sample size
e Level 2 sample size More than two were
e Level 1sample size selected Error! Only select
e  Power »| one option!
A
Step 4 Missing at least
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Please enter the following parameters ;:r?hré I:;eﬁseitz(ljl "
(User inputs) > aramete?s
p
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RESULTS

7.2 Application Example for Continuous Data

www.manaraa.com



110

To illustrate how power and sample size in a three-level study can be computed using our
methods, we present a power analysis example with continuous data taken from a recent study.
The example itself can be used as a template for other similar research designs.

Consider the cluster randomized trial conducted by Calear et at. (2009). The study was
designed to investigate the effect of an online, self-directed cognitive behavior program in
preventing and reducing the symptoms of anxiety and depression in an adolescent school-based
population. The program was based on cognitive behavior therapy. It consisted of five interactive
modules with information, animated demonstration, quizzes and exercise. The goal of the
program was to change dysfunctional thoughts, improve interpersonal relationship, and teach the
students important life skills.

The outcome variables of interest were anxiety and depressive symptoms. Both anxiety
and depression quizzes were completed at the beginning and the end of the MoodGYM program.
Anxiety was measured with the Revised Children’s Manifested Anxiety Scale, which consists of
37-item self-report questionnaire. A total score was calculated by summing the “Yes” responses
for the anxiety-related questions. Depressive symptoms were measured with the Center for
Epidemiological Studies Depression Scale, which consists of 20 items. A total score was
calculated by summing item scores and are assumed to have a continuous distribution.

The authors computed a power analysis from a two-level standpoint with students nested
within classrooms (school effect was not taken into account). Under this assumption, the
reported sample size was approximately 15 classes of 30 for each treatment arm. The calculation
was based on detecting a post-intervention effect size of 0.30, with a power of 0.90 and

alpha=0.05. The ICC coefficient at the class level (between-classes variance divided by total
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variance) was assumed to be 0.02 and the total variance was assumed to be 36 based on the
report from the study.

We will perform a power analysis for the aforementioned study under the three-level
framework. To do this, we first assume that the schools were randomly sampled from a larger
population of schools. In addition, we also need to select plausible values for the clustering effect
at the school level since this information was missing in the paper. We follow the report from the
National Assessment of Educational Progress, which suggested that with a three-level design
(students are nested within classrooms and classrooms are nested within schools), the clustering
effect at classroom level is approximately 2/3" as large as the clustering effect at the school
level (Konstantopoulos, 2008). Thus, given the classroom ICC of 0.02 in this study, we obtained
an ICC of 0.03 for the school effect. This value represent the correlation between two students in
the same school (and different classrooms).

It follows that the variances at school level and classroom level can be determined by
o’ =pxol=0.03x36=1.08
(75 =rxo’=0.02x36=0.72

ol =0’ -o; —O'FZJ =36-1.08-1.72=34.2

2

2
(o}
Note that the authors defined ,o:G—C2 and r=—2>. With an effect size of 0.3, the
foge o7

difference measurement between the treatment and control groups is given by:

d =5xyJo? =0.3x~/36 =1.8
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Case 1: Randomize at Level One without Interaction

Assume for each school the researchers plan to select 6 classrooms each with a class size
of 30. Furthermore, the researchers will randomize all students equally into two study arms. The
treatment effect is assumed to be the same across all schools (no interaction effect).

We propose to compute sample sizes under the case of randomizing at level one without
interaction using our methods. Given the above information, our first task is to compute the
sample size of level three (number of schools). Following the algorithm in Figure 7.1, the steps
to be taken are as follows:

e Step 1: Continuous outcome
e Step 2: Randomizing at level one
e Step 3: Computing sample size at level three
e Step 4: The parameters entered are
o Proportion randomized to intervention armz =0.5,
0 Expected power 1-4=0.90
o Significance level  =0.05
o Sample size of level two p =6

o Sample size of level one n=30

o Variance between schools ¢ =1.08
o Variance between classes a§ =0.72

0 Residual variance o? =34.2

o The treatment difference needed to detectd =1.8
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Entering the above parameters in the program, we obtain the sample size of ¢=3 for level
three. Thus, given the class size of 30 and 6 classrooms per school, we will need 3 schools to
enroll in the study in order to achieve a power of 90% with « =0.05.

What if the number of classrooms per school is larger or smaller? Let us go back to step
4 and increase the sample size of level 2 from 6 to 10. The result from the program showed that
we now only need 2 schools instead of 3 schools. On the other hand, if we reduce the sample size
of level two from 6 to 4, the program then indicated that we now will need 4 schools instead of 3
schools.

Now, fixing the total number of classrooms per school at 6, how many schools will we
need if the class size is either larger or smaller? To answer this question, we go back to step 4 of
the program and increase the sample size at level one (number of students per class) from 30 to
40. The result suggests that we will need only 2 schools instead of 3 schools in this case. On the
contrary, if we reduce the class size from 30 to 20, the result showed that we then need 4 schools
instead of 3 schools in order to achieve the same power.

Table 7.1 displays the results of a few different sample size combinations to achieve a

power of 90% with « =0.05 for the parameters given in the current study.

Case 2: Randomize at Level Two with Interaction

For further illustration, now let us assume that instead of randomizing at the student
level, the researchers decide to randomly assign the classrooms in each school to the two study
arms. In addition, we also assume that the treatment effect is not the same across schools. We
now have a different study design where randomization takes place at the second level and an

interaction effect between treatment and schools exists.
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Table 7.1:
Some Sample Size Combinations for the YouthMood Project Trial

Randomizing at Level One without Interaction

Class size Number of Number of Schools
classrooms

10 4 12
6 8

8 6

10 5

20 4 6
6 4

8 3

10 3

30 4 4
6 3

8 2

10 2

40 4 3
6 2

8 2

10 2

Assuming all other parameters remain the same, denote the variance of the interaction

effect by o, Suppose the magnitude of this new variance term is about 20% of the variance

across schools, we obtain the following:
o’ =0.20xc’ =0.216

o, =0 -0, -0, -0, =36-1.08-1.72-0.216 = 33.98

Again, assume for each school the researchers plan to select 6 classrooms each with a
class size of 30. Given the algorithm in Figure 7.1, the steps in the program now can be modified
as follows

e Step 1: Continuous outcome

e Step 2: Randomizing at level one with interaction between treatment and level three
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e Step 3: Computing sample size at level three
e Step 4: The parameters entered are
o Proportion randomized to intervention armz =0.5,

o0 Expected power 1-£=0.90

o Significance level & =0.05
o Sample size of level two p=6

o Sample size of level one n=30

o Variance between schools o =1.08
o Variance between classes o =0.72
o \Variance of the interaction between treatment and school o2 =0.216

0 Residual variance o7 =33.98

0 The treatment difference needed to detect d =1.8

Entering the above into the program, we obtain a total sample size of 8 schools in order
to achieve a power of 90% with « =0.05.

How would this sample size change if the number of classrooms per school changes?
Going back to step 4 and increase the sample size of level two from 6 to 10, we see that only 7
schools are needed instead of 8 schools. On the hand, if we reduce the sample size of level two
from 6 to 4, the program then indicates that we need 10 schools instead of 8 schools as initially
stated.

To examine the effect of class size, we fix the total number of classrooms per school at 6
and vary the number of students per classroom. Modifying step 4 of the program by increasing

the sample size at level one (number of students per class) from 30 to 40. The result suggests that
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we will only need 7 schools in this case. However, reducing the sample size at level one from 30
to 20 indicates that we will need 9 schools instead of 6. Table 7.2 displays the results of a few
sample size combinations to achieve a power of 90% with « =0.05 for the parameters given in

this hypothesized scenario.

Table 7.2:
Some Sample Size Combinations for the YouthMood Project Trial

Randomizing at Level Two with Interaction

Class size Number of classrooms Number of Schools

10 4 17
6 13

8 11

10 9

20 4 12
6 9

8 8

10 7

30 4 10
6 8

8 7

10 7

40 4 9
6 7

8 7

10 6

7.3 Application Example for Binary Data
Consider the Dutch Helping Hands Trial, where researchers studied methods to reduce

hospital-acquired infections through a preventive measure —hand hygiene (Teerenstra et al.,
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2010). In this study, two methods to improve adherence to hand hygiene guidelines in hospitals
were compared. Both methods targeted on changing the nurse behavior.

The first method focused on the nurses (education, feedback) and the wards (facilities).
The second method added other elements such as social influence in groups (norm and target
setting within the nurse team). Random assignment took place at the ward level, i.e. each method
is randomized to a subset of wards (level three), nurses (level two), and evaluations (level one).
Evaluations were binary outcomes reflecting whether the guidelines are followed for each hand
hygiene opportunity.

In their power analysis, the researchers forecasted that the probabilities of adherence in
the standard group and the group with extended strategy to be 0.60 and 0.70 respectively. It is
assumed that the behavior of an individual nurse is fairly consistent and nurses within the same
ward share some common working environment. Based on past studies, the intraclass correlation

between the wards was set as o =0.3 and the intraclass correlation between nurses (within the
same ward) was set as r =0.6. The suggested sample sizes were 3 evaluations on approximately

15 nurses on each ward. Assuming the total variance was approximated at o7 = 0.1 based on the

2 2 2
. . o o, to .
study report, and since the authors define p=—< and r =———", the variances of each level
o o

can be computed by:
of = pxo; =0.3x0.1=0.03 and o +0; =rxof =0.6x0.1=0.06
a§ =0.06-0.03=0.03

Using the parameters given above, we propose to compute the sample size under the
context of three-level design using the formulas derived from our methods. The following steps

in the program will be taken:
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e Step 1: Binary outcome
e Step 2: Randomizing at level three
e Step 3: Computing sample size at level three
e Step 4: The parameters entered are
o Proportion randomized to intervention armz =0.5,

0 Expected power 1-4=0.80

o Significance level « =0.05
o Sample size of level two p=15

o Sample size of level one n=3

o Variance between wards o =0.03
0 Variance between nurses 05 =0.03

0 The probability of event in treatment group p-treat=0.7

0 The probability of event in control group p-control=0.6

Inputting the above parameters into the sample size program, we arrive at a total sample
size of 24 wards for a power of 80% and « =0.05.

How would variation on the number of nurses per each ward affect this sample size
results? Suppose the number of nurses (sample size at level 2) is increased from 15 to 20 nurses
per each ward. Making this modification in the program shows that we now need only 20 wards.
On the other hand, reducing the number of nurses per ward from 15 down to 10 brought the total
wards required to achieve the same level of power up to 32 wards instead of 24.

Suppose the number of nurses in each ward is fixed at 15. Adjusting sample size at the

first level (number of evaluations) also affects the sample size results for level three. Suppose
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the number of evaluations is increased from 3 to 5 per nurse. This modification shows that we
now need only 18 wards. On the other hand, reducing the number of evaluation per nurse from 3
down to 2 brought the total wards required to achieve the same level of power up to 32 wards
instead of 24 wards. Table 7.3 shows the sample size combinations for the given parameters

described in step 4 above.

Table 7.3:
Some Sample Size Combinations for the Dutch Helping Hands Trial

Randomization at Level Three

Number of Number of Nurses Number of Wards

Evaluations

2 5 80
10 44
15 32
20 26

4 5 44
10 26
15 20
20 18

6 5 32
10 20
15 16
20 14

8 5 26
10 18
15 14
20 12

7.4 Comments on the Application Examples
Above are a few examples to illustrate the use of the user-interface program and how our

derived formulas can be applied to compute sample size in different study design settings. The
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values chosen in Table 7.1, Table 7.2, and Table 7.3 were based on a range of typical sample
sizes that were seen in similar studies. The program, however, was designed to be flexible and
allow the users to specify any combination sets of parameters. For example, although only
sample sizes at level one and level two were allowed to change, it should be noted that similar
analyses can easily be done by looking at different sets of combinations of the desired power and
different values of the intraclass correlation as well as varying the sample size at level three.

The goal of the application examples was to demonstrate the use of our formulas and our
program to provide the researchers with several trade-off options to achieve the appropriate
sample sizes. A user manual is provided in Appendix A for more details on how to implement

the SAS program.
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Chapter 8

Discussion and Future Work

This chapter presents the principal findings, discusses the results, and gives a list of
future work that can build on the work presented here. We will start by providing a brief
summary of the work that was detailed in previous chapters. We then will discuss the
significance of this work by interpreting the results in light of our current knowledge about
sample size and power in cluster randomized trials. Finally, we will suggest extensions for future

work.

8.1 Summary of Work

Motivated by the need of a proper study design, this work provides sample size and
power calculations for three-level cluster randomized trials. We considered a two-group
comparison involving one treatment arm and one control arm. We assumed no covariates were
included in the model. We proposed the relevant power functions in six important settings for
two of the most popular outcomes: continuous and binary. The six scenarios depend on which
level the allocation of treatment takes place and whether there is an interaction effect. They are:

(1) Randomizing at level three

(2) Randomizing at level two without interaction

(3) Randomizing at level two with interaction between treatment and level three

(4) Randomizing at level one without interaction

(5) Randomizing at level one with interaction between level three and treatment
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(6) Randomizing at level one with interaction between level two and treatment.

We derived our power functions under the framework of generalized linear mixed model
(GLMM) theory. For continuous outcomes, we used a robust variance estimator to derive the
variance of the treatment effects. For binary outcomes, we applied the pseudo-likelihood
approach to approximate the variance of the estimated treatment effects using a first-order Taylor
series expansion. In the cases where the inverse of the correlation matrix could be written
explicitly, we derived close forms for the design effects and for the power function respectively.
For situations where a closed form solution does not exist, we proposed general formulas that
yield satisfactory results for every setting.

To assess the accuracy of our formulas, we conducted a simulation study in which we
compared the empirical power and the estimated power. The simulation programs were written
such that any set of parameters can be tested. We reported the simulation results for 27
combinations of parameters per each design settings. We simulated 784 sets of data for each
combination based on a margin of error of 0.035. Thus, altogether we had 21,168 sets of data for
each of the six different scenarios per each type of outcome. The simulation results confirmed
that our derived formulas for sample size and power are accurate under the conditions that we
examined.

Finally, we demonstrated the application of our power and sample size through the
development of a user-interface SAS program. This program allows the researchers to calculate
approximate sample sizes and power for a variety of design settings described above. To make
the calculation, certain information is needed about the specific parameters. These parameters

include the difference in the treatment effects, the variances of the random effects, the level of
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significance alpha, and the proportion of the sample that is allocated into each treatment arm. We
illustrated the use of the SAS program through some practical examples taken from past studies.
8.2 Discussion

In this work, we presented the relevant formulas to compute sample size and power for
several important three-level study designs. Our formulas were derived based on the GLMM
method, which has been proven to be a powerful technique to handle correlated outcomes.
GLMM combines the properties of the two popular statistical frameworks, linear mixed models
(which allows for random effects) and generalized linear models (which handle non-normal data
via the use of the link functions and exponential family).

As discussed in Chapter 2, statistical models that have been used for data with nested
correlation structure are classified into two categories: the population-averaged (marginal)
models or the cluster-specific (conditional) models. Each approach has its own advantages. Since
GLMM is a subject-specific approach, our formulas estimated the parameters of the random
effects for each subject, and estimated the fixed effect as a common factor. Thus, it makes
specific use of the within-subject information as oppose to population-average approach.

It should be noticed that our power functions were applicable only for two-arm trials.
More specifically, we focused on the test for treatment contrast drawn from two treatment
groups, not from multiple treatment effects. The reason behind this is that in most published
literature, multilevel designs were chosen to achieve the power of a particular treatment contrast.
Even when several treatments are being compared, typically there is always a contrast that plays
the most important role to the researchers. Calculations for sample size and power would then be

based on this main treatment contrast.
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In some previous similar work, the sample size formulas were constructed from the Z-
test under asymptotic normal distribution (Campbell et al., 2004; Teerenstra et al., 2008; Dang et
al., 2008). In multilevel design, however, power depends on the magnitude of the variance
components that are usually unknown. Thus, a better choice of for the sampling distribution of
the test statistic should be a t-distribution, which has a thicker tail than the normal distribution.
To gain better accuracy for our results, we derived the power functions based on the CDF of a t-
distribution, adjusting for appropriate degrees of freedom. This helped to avoid the
overestimation of power from the same critical value based on the standard normal distribution.

In this work we discussed different design situations where randomization can take place
at any level. In the cases where an interation might occur, we considered only the two-way
interaction effects. That is, we only looked at the interactions between treatment and level three
or treatment and level two. While conceptionally a three-way interaction effect can happen, in
reality this model is not practical. Firstly, from our observation the convergence rate of GLMM
model with three-way interaction is very slow, especially for data with three-level structure.
Secondly, in the design stage it is very difficult to pre-specify the variance of this three-way
interaction term. Lastly, it is hard to avoid the confounding effect in models with three-way
interaction. For example, a treatment effect that varies between physicians will also vary
between practices, since physicians are nested within practices.

Our power functions were derived from the unadjusted models where no covariate was
included. However, sample sizes that include covariates other than treatment effect can be
incorporated by following the same procedure. Our methods can be extended so that the
correlation matrix will account for the presence of the covariates. Nevertheless, adding

covariates into the models should not bring any significant changes in the magnitude of the
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treatment effect, since in principle the covariates should not be related to the treatment.
However, including covariates will affect the variance of each level and eventually will change
the total variance. Generally, adding other covariates besides treatment will decrease the residual
variance and increase the power. It will also reduce the degrees of freedom for the test statistics
(Murray, 1998). Thus, the sample size formulas we presented here yield a more conservative
result as oppose to methods where covariates are included. In addition, it is common for power
and sample size software to account only for the treatment effect and not include the covariates.

As always, one needs to specify the underlying correlation structure to compute power in
a multilevel design study. In this work, we assumed the most convenient and the most common
choice—the compound symmetry correlation structure. The nested exchangeable structure we
used for the three-level design is a direct generalization of the exchangeable structure that is
commonly used in two-level models. This structure is suitable when the units in level one are
exchangeable within the level two units, and the level two units are exchangeable within the
level three units. Although more complex correlation structures such as AR1 or Toeplitz can be
applied, we argue that at the early design stage, it is doubtful that we know the true correlation
structure unless some sensitivity analyses were conducted beforehand. In addition, a more
complex correlation structure introduces theoretical difficulties that are not necessary at the
design stage.

Knowledge of plausible values of the variances or the two intraclass correlations is
required for our computation. However, the ability to a priori postulate the intraclass correlation
when designing a cluster randomized trial is limited. Such estimates are sparse in the literature,
especially for three-level designs. To overcome this problem, a range of plausible values of the

two intraclass correlations should be considered in order to assess the sensitivity of the results to
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the misspecification of the parameters. Teerenstra et al. (2008) suggested that the researchers
should examine the two-level intraclass correlations that are currently available in the literature
and apply these values to the three-level models. Another way to facilitate the estimation of the
intraclass correlation is to base on intermediate assessment of the within and between variances.
Vierron and Giraudeau (2007) suggested that the recruitment can be flexible enough to be
shortened or extended depending on the results of the internal pilot study. Thus, adjustment of
the sample sizes to the intraclass correlation estimates can be done accordingly.

Our methods made the assumption that all designs were balanced. Although in practice it
is a natural consequence of recruitment process that the sample sizes can be unequal, it has been
suggested that imbalance designs should be avoided as much as possible. The connection
between imbalanced cluster sizes and power computation is intuitively obvious. Firstly, the
estimates of small cluster sizes will be less accurate than those of larger cluster sizes in
imbalanced designs. Secondly, the addition of more subjects into larger clusters does not
compensate for the lost of precision in smaller clusters (Eldridge et al., 2006). Thus, our study
was based on a balanced design, since imbalance might lead to biased estimates and decrease the
reliability of the results.

In this work we only examined power in the setting of a completely randomized design.
Although other designs such as matched pairs and stratified randomized designs are also
available, the completely randomized design is chosen for pragmatic reasons. First, it is the
simplest and the most popular design in CRT. It allows for a wide number of statistical methods
to be applied in the analysis steps and serves as a basis for deriving another sample size
algorithm for more complex designs. Second, sensitivity analyses based on other designs can

always be explored when needed.
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In our simulation study, we examined a number of combinations defined by different
values of the variances and sample sizes at each level. Although the number of parameters was
limited, these parameters were selected from analysis of data of previous CRTs encountered in
the literature. Therefore, the number of units on each level and the intraclass correlation were
similar to those observed in this area of research. In addition, the simulation program was design
in such a way that the same finding can be examined across a much larger number of scenarios.
We speculate that similar conclusions would be obtained in these different settings.

Most existing sample size calculators and software rely heavily on simulation algorithms.
Such method is limited for the GLMM approach, since the convergence rate is very low for data
with small or medium sample sizes. Besides, software based on simulations usually requires the
users to specify the variance-covariance structures, which sometimes can be confusing and
complicated. Our sample size program focuses on the user-friendly aspect. It computes sample
sizes and power directly from SAS IML and provided the results much faster than does
simulation.

In most studies with a two-level design, either the clusters or the subjects within clusters
can be randomized into different treatment conditions, suggesting that random assignment can be
done at any level. The same logic holds for three-level designs, except that the nested structure is
more complicated. While most previous work in power and sample size for three-level studies
focused mainly on designs where random assignment takes place at the highest level, our study
considered other situations that might be encountered in practice. Although the formulas we
provided were model-specific, we present the results for a wide variety of different models
corresponding to different designs. We allowed for the fact that randomization can occur at any

level. We also considered the cases when interaction effects occurred, including the interaction
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between treatment with each of the higher levels, level three and level two. By addressing the
vast different designs, we provide a versatile tool to aid researchers in making their sample size

decisions.

8.3 Future work

Taken as a whole, our study provided the general statistical formulas to compute power
and sample size in three-level cluster randomized data under GLMM approach. It should be
pointed out that the work presented here is just an initial step with many further steps to follow.
Additional methodological and computational work is necessary and important in this research
area.

First, our methods only focused on continuous and binary data, whereas other types of
data can be encountered in practice. By following the same path, we believe that relevant
formulas for different types of data can be derived using the similar methods. For example, under
the framework of GLMM different link functions can be selected and different variance
structures can be constructed. Thus, future work on this topic can include extending the same set
of formulas to ordinal, nominal, or count data.

The extensions of this work to longitudinal correlated data at level 1 would be useful in
practice. Although in our earlier discussion, we advocated for the use of compound symmetry
variance-covariance structure in the design stage, there are certainly situations when other
structures are more appropriate. For example, another area that we should investigate in our
future work is to apply similar findings to repeated measures or longitudinal studies. Following
the same procedure we can develop formulas that yield sample sizes requirement under other

variance-covariance structures such as first-order autoregressive, toeplitz, or other more complex
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structures with different variances at different time points. One of the advantages of our finding
is the fact that as long as the variance structure is correctly specified, proper modifications can be
implemented under GLMM models to address the sample size problem. Hence, future work for
repeated measures and longitudinal studies is feasible.

Our formulas were based on the assumption that all levels were treated as random. This
assumption implies that the sample sizes of each level are selected randomly from a larger
population. In practice, this does not always happen. In designing CRT, it is often the case that
available number of clusters is somewhat limited. For example, consider a three-level CRT of
center—physician—patient, where only three centers are available in the community. In this
situation, if all three centers are selected in the study then it is more appropriate to treat center as
a fixed effect rather than a random effect. Thus, another extension of our work is to examine
situations where any level(s) can be treated as a fixed effect when the corresponding units of that
level are not randomly selected.

Even though our work provided methods for computing sample sizes, it did not account
for the cost involved in the design stage. In any nested study, the units at each level have a cost
associate with them and the researchers need to decide on a sample size which will minimize
cost or be within a certain budget. Obviously, increasing sample sizes of any level can be a trade-
off between the gain in statistical power and the recruitment costs. Optimizing the choice of
number of units per each level under certain budget constraints is another practical issue that we
should examine. A cost function can be derived and used when costs for sampling an additional
unit of any level can be quantified. In addition, minimum budget required for a given power or

precision should also be examined separately for each design.
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Although our user-interface program is a versatile tool for computing sample size and
power for the designs under examination, it is by no means a final product. Several features can
be added to the program, for example, the addition of a help menu, a printout option for final
report, and more graphical descriptions of the power functions. The program can also serve as a
foundation for the development of independent software — not necessarily on the SAS platform —
to compute power and sample size for CRT.

Finally, a number of complications in computing sample size and power in individual
randomized studies can equally be seen in CRT. To name a few, these issues include: designs
with more than one treatment group, designs with unequal sample sizes between treatment
groups, matched-pair designs and stratified designs, trials with losses to follow-up and missing
data, longitudinal designs with different attrition rates. These issues can be topics for future
research.

8.4 Concluding Remarks

In the early stage of planning any clinical trial or experiment, it has been widely accepted
that the evaluation of sample size is crucial. Sample size determination is an important task, as
insufficient sample size can lead to inadequate power and inaccurate findings, whereas excessive
sample size is a waste of resources.

We contend that this work serves as a useful and practical application for sample size and
power planning in three-level study designs. Our formulas and our user interface SAS program
provides users with a quick tool to estimate sample size and power in a variety of different
design settings.

Finally, calculation of power and sample size involves more than simply making the best

guesses about the parameters of a proposed analysis. It requires assumptions that typically cannot
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be tested until the actual data have been collected. To obtain accurate results from our methods,
researchers should be able to make reasonable estimates and assumptions on preliminary
information that are available. If the inputs are inappropriate for the model under examination or
if the wrong method is used, the wrong answer will emerge and the sample size results will no

longer be appropriate for the study of interest.
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Appendix A

User’s Guide for the SAS Program

This manual provides the researchers with a guide to effectively use the interface SAS
program that was written to demonstrate the application of our work. The program was
developed to address sample size and power questions for three-level study designs with
continuous and binary outcomes. The formulas adopted in this program were derived in Chapter
4 and Chapter 5. Application examples were presented in Chapter 7.

When the users first run the program, a brief description will be shown on the screen to
give basic instructions as to how to choose the options and how to move around in the program.
The program consists of four steps. The users will:

e Choose an option by typing x into the blank
e Use TAB key to move from one field to another field
e Press ENTER to move to the next step
A.1 First step
In the first step, the users will be asked to choose the type of outcomes for their

experiment. The choices are either continuous or binary:

S File View Tools Solutions Window Help -8 X
- | 5| ek By DEW £ 0L
Command ===>

*This program displays sample sizes computation and power analysis
*Select the options with an x
*Use the TAB key to move from field to field and press ENTER to continue

IS YOUR OUTCOME CONTINOUS OR BINARY

X Continuous Outcome
_ Binary Outcome
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The selection is done by typing an x into the blank provided in front of the options. Here
the users are required to select only one of the two options. If neither of the options were selected
or both options were selected, an error message will appear to ask the users to re-enter their
input. If the selection is done correctly, the program will move to the next step after the users hit
ENTER. The above screen shows an example when continuous outcome was chosen.

A.2 Second step
In the second step the users will be asked to choose the study design. There are six study

designs available. The following screen will appear:

AS REQUES =
G File View Tools Solutons Window Help
o [ ~| =Y B R0 0L
Command ===>
*This program displays sample sizes computation and power analysis
*Select the options with an x
*Use the TAB key to move from field to field and press ENTER to continue

o

IS YOUR OUTCOME CONTINOUS OR BINARY

x Continuous Outcome
Binary Outcome

SELECT ONE OF THE FOLLOWING STUDY DESIGNS

Randomize at level 3

Randomize at level 2

Randomize at level 1

Randomize at level 2 with interaction effect

Randomize at level 1 with interaction between treatment and level three
Randomize at level 1 with interaction between treatment and level two

[ 4

Again, the users are required to select one of the six options by typing an x in the blanks.
An error message will appear if none of the options was selected or more than one were selected.
The above screen shows an example when randomization at level three was chosen. The users
will hit ENTER to move to the next step.
A.3 Third step

In the third step, the users will be asked to select what they desire to compute. The
choices include sample sizes for the three levels or power. Again, one and only one option must
be selected in order to move to the next step. An error message will appear if the instructions

were not followed properly.
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For demonstration, the following screen will appear if the users decide to compute level

three sample size.

=SS TREQUEST] - ——————————____————__—_————————— 5 X
§ File View Took Solutions Window Help & x
v | K| & [ By BB *OL

Command ===>

*This program displays sample sizes computation and power analysis
*Select the options with an x
*Use the TAB key to move from field to field and press ENTER to continue

IS YOUR OUTCOME CONTINOUS OR BINARY

X Continuous Outcome
Binary Outcome

SELECT ONE OF THE FOLLOWING STUDY DESIGNS

Randomize at level 3

Randomize at level 2

Randomize at level 1

Randomize at level 2 with interaction effect

Randomize at level 1 with interaction between treatment and level three
Randomize at level 1 with interaction between treatment and level two

[ B B B

WHICH OF THE FOLLOWING DO YOU WISH TO COMPUTE

Level three sample size
Level two sample size
Level one sample size
Power

[ 4

A.4 Fourth step

Hitting ENTER after the third step, the users will then be asked to enter certain
parameters. The number of parameters depends on the options chosen in previous steps. The
following lists all possible parameters and instruction on how to input them:

Proportion of sample size allocated to treatment:

By default, this proportion is set at 0.5 (equal allocation). However, any proportion can
be chosen as long as the product of the chosen sample size at the corresponding level and this
proportion is an integer. For example, suppose randomization takes place at level three and the
researchers decide on a proportion of 0.6 for treatment arm. A sample size of 8 for level three
will be an illegal input in this case since 0.6 x 8 = 4.8 is not an integer. However, a sample size

of 10 for level three will be a valid input since 0.6 x 10 = 6 is an integer.
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The power expected to achieve

Here the users are required to type in the value for the power expected to achieve in their
study. These values typically range from 0.75 to 0.90. The input is required to be in decimal
format.
Level one (two, three) sample size

For these parameters, the users are expected to type in their anticipated sample sizes for
the corresponding levels. The numbers are supposed to be integers.
Variance between level one (two, three)

These variances are usually computed from a pilot study or selected from previous
studies. The variances are expected to be in integer or decimal formats.
Variance of the interaction

If a design with interaction effect was selected in previous steps, the program will be
prompted to ask for the variance of the interaction effects. Again, these variances are usually
computed from a pilot study or selected from previous studies. They are expected to be in integer
or decimal formats.
Treatment difference

If the task is to calculate sample size or power for continuous outcome, users will be
asked to input the difference of the two treatment means to be detected. Values of treatment
difference are expected to be in integer or decimal formats.
The probabilities of event in treatment group and control group

If the task is to calculate sample size or power for binary outcome, users will be asked to
input the expected control group proportion and the expected proportion in the intervention

group. These proportions should be entered in decimal format.
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Alpha

The level of significance alpha is set at a default value of 0.05. However, the default can
be changed if the users wish to do so.

The following screen shows an example of the parameters input for step 4 when the
requirement was to compute sample size at level three for continuous outcome where
randomization takes place at level three. The sample size result is 8, after hitting ENTER after all

parameters were provided.

AS - [REQUES m| O R
G Fle View Took Solutions Window Help - 8x
v | El 1 &0 o BEu x0&
Command ===}

#This program displays sample sizes computation and power analysis
#Select the options with an x
#lse the TAB key to move from field to field and press ENTER to continue

IS YOUR OUTCOME CONTINOUS OR BINARY

x Continuous Outcome
_ Binary Outcome

SELECT ONE OF THE FOLLOWING STUDY DESIGNS

Randomize at level
Randomize at level
Randomize at level
Randomize at level 2 with interaction effect

Randomize at level 1 with interaction between treatment and level three
Randomize at level 1 with interaction between treatment and level two

— W

[ Y A B R > 4

WHICH OF THE FOLLOWING DO YOU WISH TO COMPUTE

x Level three sample size
_ Level two sample size
_ Level one sample size
_  Pouwer

TO COMPUTE SAMPLE SI1ZE AT LEVEL TRHEE, PLEASE PROVIDE THE FOLLOWING INFORMATION

Proportion of sample size allocated to treatment 0.5
The pouer expected to achieve 0.80

Level two sample size 10

Level one sample size 10
Variance between level three 0.01
Variance between level two 0.39
Variance between level one 0.B0
Treatment difference 0.70

Alpha 0.05

THE SAMPLE SIZE FOR LEVEL THREE IS 8
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After completing step 4, the users will be prompted to three options as follows

WOULD YOU L IKE TO:

_ Start a new caleulation
X Modify previous calculation
_ End the progran

To start a new calculation

In choosing this option, the users will be brought to step one of a new calculation. All displays of
the old screen will disappear.

Modify previous calculation

In choosing this option, the users will be brought back to the beginning of step 4 of the same
calculation. All displays from the old screen will remain the same. The users are allowed to
modify the parameters in step 4 and obtain the new result.

End the program

When this option is selected, the SAS program will stop running and the interface screen will be

closed.
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Appendix B

Simulation Results

The following tables in Appendix B showed results of the simulation study for different
randomization schemes. For all tables, the notations are defined as follows:

c: Sample size of level three

p: Sample size of level two

n: Sample size of level oneT

d: The difference in treatment effect

7 : Estimated power based on simulation
7 : Theoretical power based on the derived formulas
7 - Proportion of sample size allocated to the treatment group

4. : Probability of the event of interest in control group (for binary cases)
o’ Variance between level three

o, : Variance between level two

o Variance between level one

2 : Variance of the interaction between level three and treatment

o, - Variance of the interaction between level three and treatment
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Table B.1: Simulation Results for Case 1
Randomize at Level Three—Continuous Outcome

c P n d 7 95% Cl of 7
10 4 10 0.67 0.74 (0.65, 0.75)
20 0.64 0.71 (0.61, 0.79)

30 0.64 0.76 (0.67, 0.85)

8 10 0.49 0.74 (0.65, 0.83)

20 0.48 0.77 (0.69, 0.85)

30 0.47 0.67 (0.58, 0.76)

12 10 0.41 0.74 (0.65, 0.83)

20 0.40 0.75 (0.69, 0.77)

30 0.40 0.76 (0.54, 0.79)

20 4 10 0.44 0.72 (0.63, 0.81)
20 0.42 0.73 (0.64, 0.82)

30 0.42 0.72 (0.63, 0.81)

8 10 0.32 0.79 (0.72, 0.88)

20 0.31 0.71 (0.62, 0.80)

30 0.31 0.76 (0.74, 0.76)

12 10 0.27 0.71 (0.62, 0.80)

20 0.26 0.85 (0.78, 0.92)

30 0.26 0.73 (0.64, 0.82)

30 4 10 0.35 0.76 (0.63, 0.81)
20 0.34 0.76 (0.75, 0.78)

30 0.33 0.72 (0.63, 0.81)

8 10 0.26 0.73 (0.64, 0.82)

20 0.25 0.77 (0.61, 0.79)

30 0.25 0.73 (0.64, 0.82)

12 10 0.22 0.79 (0.71, 0.87)

20 0.21 0.72 (0.63, 0.81)

30 0.21 0.77 (0.74, 0.90)

c2=0.01, 0,2) =0.39, ¢/ =0.60, 7 =0.75, 7=0.5
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Table B.2: Simulation Results for Case 2
Randomize at Level Two without Interaction—Continuous Outcome

c P n d 7 95% Cl of 7
10 4 10 0.58 0.72 (0.68, 0.76)
20 0.56 0.70 (0.66, 0.77)

30 0.55 0.71 (0.67, 0.75)

8 10 0.40 0.75 (0.71, 0.78)

20 0.39 0.73 (0.72,0.79)

30 0.38 0.73 (0.69, 0.76)

12 10 0.33 0.74 (0.71, 0.81)

20 0.31 0.78 (0.75, 0.80)

30 0.31 0.70 (0.65, 0.75)

20 4 10 0.40 0.79 (0.76, 0.81)
20 0.39 0.78 (0.75, 0.80)

30 0.38 0.74 (0.70, 0.77)

8 10 0.28 0.77 (0.74,0.79)

20 0.27 0.76 (0.72, 0.79)

30 0.27 0.76 (0.72, 0.79)

12 10 0.23 0.76 (0.72,0.79)

20 0.22 0.75 (0.67,0.82)

30 0.22 0.74 (0.69, 0.82)

30 4 10 0.33 0.73 (0.69, 0.76)
20 0.32 0.76 (0.72,0.79)

30 0.31 0.78 (0.75, 0.80)

8 10 0.23 0.78 (0.75, 0.80)

20 0.22 0.73 (0.69, 0.76)

30 0.22 0.75 (0.72,0.82)

12 10 0.19 0.70 (0.65, 0.72)

20 0.18 0.73 (0.69, 0.76)

30 0.18 0.73 (0.69, 0.76)

c2=0.01, 0,2) =0.39, ¢/ =0.60, 7 =0.75, 7=0.5
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Table B.3: Simulation Results for Case 3
Randomize at Level Two with Interaction—Continuous Outcome

c P n d 7 95% Cl of 7
10 4 10 0.69 0.70 (0.65, 0.77)
20 0.67 0.74 (0.74, 0.79)

30 0.67 0.75 (0.71, 0.76)

8 10 0.53 0.66 (0.61, 0.78)

20 0.52 0.71 (0.66, 0.76)

30 0.52 0.76 (0.71, 0.76)

12 10 0.47 0.76 (0.71, 0.76)

20 0.46 0.69 (0.64, 0.76)

30 0.45 0.68 (0.63, 0.80)

20 4 10 0.46 0.70 (0.65, 0.77)
20 0.45 0.70 (0.65, 0.77)

30 0.44 0.72 (0.67, 0.75)

8 10 0.35 0.75 (0.70, 0.75)

20 0.35 0.74 (0.69, 0.76)

30 0.34 0.65 (0.60, 0.77)

12 10 0.31 0.71 (0.66, 0.76)

20 0.30 0.74 (0.69, 0.75)

30 0.30 0.77 (0.72, 0.79)

30 4 10 0.37 0.74 (0.69, 0.74)
20 0.36 0.73 (0.71, 0.76)

30 0.35 0.74 (0.71, 0.76)

8 10 0.28 0.73 (0.72, 0.78)

20 0.28 0.74 (0.69, 0.75)

30 0.27 0.68 (0.63,0.77)

12 10 0.25 0.73 (0.72, 0.79)

20 0.24 0.74 (0.73, 0.78)

30 0.24 0.77 (0.74,0.79)

02=0.01, 02=0.39, 67=0.55, 62 =0.05, 7 =0.75, 7=0.5
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Table B.4: Simulation Results for Case 4
Randomize at Level One without Interaction—Continuous Outcome

c P n d 7 95% Cl of 7
10 4 10 0.20 0.77 (0.76, 0.78)
20 0.14 0.82 (0.7,0.82)

30 0.12 0.71 (0.69, 0.75)

8 10 0.14 0.76 (0.74,0.78)

20 0.10 0.78 (0.74,0.78)

30 0.08 0.67 (0.64, 0.84)

12 10 0.12 0.77 (0.75, 0.78)

20 0.08 0.74 (0.72, 0.76)

30 0.07 0.78 (0.75, 0.79)

20 4 10 0.14 0.76 (0.74, 0.78)
20 0.10 0.76 (0.74, 0.78)

30 0.08 0.74 (0.72, 0.76)

8 10 0.10 0.74 (0.72, 0.76)

20 0.07 0.73 (0.71, 0.76)

30 0.06 0.73 (0.71, 0.76)

12 10 0.08 0.72 (0.68, 0.75)

20 0.06 0.74 (0.72, 0.76)

30 0.05 0.77 (0.75, 0.78)

30 4 10 0.12 0.76 (0.73,0.77)
20 0.08 0.77 (0.76, 0.78)

30 0.07 0.73 (0.71, 0.76)

8 10 0.08 0.75 (0.72,0.77)

20 0.06 0.76 (0.74,0.78)

30 0.05 0.73 (0.70, 0.76)

12 10 0.07 0.78 (0.75, 0.79)

20 0.05 0.76 (0.72, 0.81)

30 0.04 0.74 (0.72,0.81)

c2=0.01, 0,2) =0.39, ¢/ =0.60, 7 =0.75, 7=0.5
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Table B.5: Simulation Results for Case 5
Randomize at Level One with Treatment x Level Three—Continuous Outcome

c P n d 7 95% Cl of 7
10 4 10 0.37 0.75 (0.73,0.77)
20 0.34 0.69 (0.67, 0.79)

30 0.32 0.73 (0.72, 0.78)

8 10 0.34 0.72 (0.70, 0.74)

20 0.32 0.71 (0.70, 0.78)

30 0.31 0.75 (0.73,0.77)

12 10 0.32 0.70 (0.69, 0.76)

20 0.31 0.76 (0.71, 0.86)

30 0.31 0.74 (0.72, 0.79)

20 4 10 0.25 0.72 (0.71, 0.79)
20 0.22 0.71 (0.71, 0.8)

30 0.22 0.70 (0.64, 0.78)

8 10 0.22 0.74 (0.74,0.78)

20 0.21 0.75 (0.73,0.77)

30 0.21 0.74 (0.72, 0.76)

12 10 0.22 0.75 (0.73,0.81)

20 0.21 0.71 (0.70, 0.78)

30 0.20 0.73 (0.71, 0.76)

30 4 10 0.20 0.72 (0.68, 0.75)
20 0.18 0.75 (0.74,0.78)

30 0.17 0.71 (0.69, 0.82)

8 10 0.18 0.68 (0.66, 0.75)

20 0.17 0.72 (0.68, 0.75)

30 0.17 0.73 (0.71, 0.77)

12 10 0.17 0.71 (0.70, 0.80)

20 0.17 0.70 (0.70, 0.79)

30 0.16 0.74 (0.72, 0.76)

02=0.01, 02=0.39, 67=0.55, 62 =0.05, 7 =0.75, 7=0.5
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Table B.6: Simulation Results for Case 6
Randomize at Level One with Treatment x Level Two—Continuous Outcome

c P n d 7 95% Cl of 7
10 4 10 0.23 0.75 (0.61, 0.77)
20 0.17 0.69 (0.65, 0.79)

30 0.15 0.73 (0.69, 0.77)

8 10 0.16 0.74 (0.71, 0.76)

20 0.12 0.74 (0.71, 0.77)

30 0.10 0.72 (0.67, 0.75)

12 10 0.13 0.70 (0.69, 0.77)

20 0.10 0.74 (0.72, 0.76)

30 0.08 0.72 (0.71, 0.78)

20 4 10 0.16 0.77 (0.75, 0.77)
20 0.12 0.70 (0.64, 0.79)

30 0.10 0.74 (0.73,0.83)

8 10 0.11 0.71 (0.68, 0.75)

20 0.08 0.74 (0.71, 0.76)

30 0.07 0.73 (0.72,0.77)

12 10 0.09 0.74 (0.71, 0.75)

20 0.07 0.69 (0.68, 0.77)

30 0.06 0.74 (0.71, 0.80)

30 4 10 0.13 0.71 (0.70, 0.76)
20 0.10 0.72 (0.71, 0.77)

30 0.08 0.73 (0.73, 0.79)

8 10 0.09 0.75 (0.71, 0.77)

20 0.07 0.72 (0.72,0.77)

30 0.06 0.71 (0.71, 0.78)

12 10 0.07 0.74 (0.71, 0.77)

20 0.06 0.70 (0.70, 0.77)

30 0.05 0.75 (0.75, 0.79)

02=0.01, 02=0.39, 67 =0.55, 0%,=0.02, 7 =0.75, 7=0.5
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Table B.7: Simulation Results for Case 7
Randomize at Level Three—Binary Outcome

c P n d 7 95% Cl of 7
10 4 10 0.16 0.74 (0.73, 0.76)
20 0.14 0.77 (0.76, 0.86)

30 0.13 0.72 (0.71, 0.74)

8 10 0.12 0.72 (0.70, 0.73)

20 0.11 0.71 (0.70, 0.80)

30 0.10 0.74 (0.73, 0.79)

12 10 0.10 0.75 (0.74, 0.76)

20 0.09 0.71 (0.70, 0.83)

30 0.09 0.75 (0.74,0.97)

20 4 10 0.11 0.74 (0.71, 0.77)
20 0.10 0.70 (0.69, 0.80)

30 0.09 0.78 (0.77, 0.85)

8 10 0.08 0.75 (0.71, 0.76)

20 0.07 0.80 (0.79, 0.91)

30 0.07 0.76 (0.75, 0.84)

12 10 0.07 0.74 (0.72,0.92)

20 0.06 0.75 (0.73,0.77)

30 0.06 0.84 (0.74, 0.93)

30 4 10 0.09 0.75 (0.73,0.82)
20 0.08 0.74 (0.71, 0.84)

30 0.07 0.76 (0.72, 0.80)

8 10 0.07 0.71 (0.68, 0.85)

20 0.06 0.73 (0.71, 0.75)

30 0.06 0.84 (0.74, 0.94)

12 10 0.06 0.77 (0.73, 0.81)

20 0.05 0.76 (0.75, 0.85)

30 0.05 0.79 (0.76, 0.81)

c2=0.01, 0,2) =0.39, yx,=0.70, 77 =0.75, 7=0.5
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Table B.8: Simulation Results for Case 8
Randomize at Level Two without Interaction—Binary Outcome

c P n d 7 95% Cl of 7
10 4 10 0.14 0.74 (0.71, 0.76)
20 0.12 0.73 (0.7,0.75)

30 0.12 0.73 (0.69, 0.75)

8 10 0.10 0.70 (0.66, 0.72)

20 0.09 0.76 (0.73, 0.79)

30 0.09 0.73 (0.67, 0.78)

12 10 0.09 0.76 (0.73, 0.78)

20 0.08 0.78 (0.74,0.82)

30 0.07 0.75 (0.73,0.87)

20 4 10 0.11 0.74 (0.70, 0.83)
20 0.09 0.76 (0.70, 0.83)

30 0.09 0.69 (0.65, 0.72)

8 10 0.08 0.78 (0.75, 0.80)

20 0.07 0.66 (0.46, 0.68)

30 0.06 0.68 (0.66, 0.76)

12 10 0.06 0.72 (0.65, 0.79)

20 0.05 0.73 (0.67, 0.78)

30 0.05 0.79 (0.75, 0.82)

30 4 10 0.09 0.73 (0.70, 0.75)
20 0.08 0.73 (0.68, 0.76)

30 0.07 0.75 (0.60, 0.77)

8 10 0.06 0.71 (0.55, 0.79)

20 0.05 0.73 (0.67,0.77)

30 0.05 0.85 (0.81, 0.88)

12 10 0.05 0.67 (0.60, 0.73)

20 0.04 0.75 (0.70, 0.79)

30 0.04 0.74 (0.57, 0.76)

c2=0.01, 0,2) =0.39, yx,=0.70, 77 =0.75, 7=0.5
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Table B.9: Simulation Results for Case 9
Randomize at Level Two with Interaction—Binary Outcome

c P n d 7 95% Cl of 7
10 4 10 0.16 0.72 (0.71, 0.73)
20 0.14 0.69 (0.67, 0.70)

30 0.13 0.75 (0.74, 0.76)

8 10 0.12 0.74 (0.72, 0.76)

20 0.11 0.72 (0.70, 0.75)

30 0.11 0.76 (0.72, 0.78)

12 10 0.11 0.73 (0.72,0.77)

20 0.10 0.74 (0.68, 0.78)

30 0.09 0.75 (0.66, 0.78)

20 4 10 0.11 0.77 (0.74, 0.78)
20 0.10 0.76 (0.74, 0.78)

30 0.09 0.70 (0.70, 0.76)

8 10 0.09 0.73 (0.71, 0.82)

20 0.08 0.78 (0.72, 0.83)

30 0.07 0.75 (0.74, 0.84)

12 10 0.08 0.74 (0.68, 0.78)

20 0.07 0.74 (0.68, 0.79)

30 0.07 0.75 (0.65, 0.82)

30 4 10 0.09 0.75 (0.69, 0.76)
20 0.08 0.70 (0.70, 0.80)

30 0.08 0.74 (0.71, 0.87)

8 10 0.07 0.73 (0.65, 0.75)

20 0.06 0.71 (0.75, 0.86)

30 0.06 0.73 (0.65, 0.81)

12 10 0.06 0.70 (0.61, 0.78)

20 0.06 0.65 (0.57, 0.73)

30 0.05 0.69 (0.51, 0.86)

62=0.01, 02=0.39, y,=0.70, 6=0.05, 7 =0.75, 7=0.5
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Table B.10: Simulation Results for Case 10
Randomize at Level One without Interaction—Binary Outcome

c P n d 7 95% Cl of 7
10 4 10 0.11 0.76 (0.68, 0.77)
20 0.08 0.75 (0.72, 0.82)

30 0.07 0.77 (0.76, 0.92)

8 10 0.08 0.74 (0.73, 0.89)

20 0.06 0.74 (0.73, 0.90)

30 0.05 0.77 (0.75, 0.95)

12 10 0.07 0.73 (0.71, 0.73)

20 0.05 0.77 (0.61, 0.80)

30 0.04 0.72 (0.69, 0.75)

20 4 10 0.08 0.79 (0.67, 0.86)
20 0.06 0.80 (0.74, 0.79)

30 0.05 0.73 (0.69, 0.82)

8 10 0.06 0.68 (0.63, 0.78)

20 0.04 0.74 (0.64, 0.88)

30 0.04 0.76 (0.71, 0.77)

12 10 0.05 0.76 (0.74,0.77)

20 0.04 0.78 (0.74,0.79)

30 0.03 0.73 (0.67, 0.84)

30 4 10 0.07 0.78 (0.65, 0.81)
20 0.05 0.75 (0.73, 0.86)

30 0.04 0.79 (0.68, 0.85)

8 10 0.05 0.72 (0.67, 0.82)

20 0.04 0.75 (0.70, 0.83)

30 0.03 0.76 (0.72,0.77)

12 10 0.04 0.79 (0.65, 0.89)

20 0.03 0.79 (0.65, 0.89)

30 0.02 0.74 (0.69, 0.84)

c2=0.01, 0,2) =0.39, yx,=0.70, 77 =0.75, 7=0.5
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Table B.11: Simulation Results for Case 11
Randomize at Level One with Treatment x Level Three—Binary Outcome

c P n d 7 95% Cl of 7
10 4 10 0.13 0.73 (0.72,0.77)
20 0.10 0.73 (0.73, 0.74)

30 0.09 0.75 (0.75, 0.77)

8 10 0.10 0.73 (0.73, 0.84)

20 0.09 0.71 (0.70, 0.83)

30 0.08 0.74 (0.71, 0.82)

12 10 0.09 0.73 (0.71, 0.77)

20 0.08 0.74 (0.73,0.79)

30 0.07 0.70 (0.69, 0.78)

20 4 10 0.09 0.72 (0.70, 0.87)
20 0.07 0.71 (0.69, 0.75)

30 0.06 0.68 (0.65, 0.77)

8 10 0.07 0.77 (0.75, 0.80)

20 0.06 0.77 (0.72, 0.87)

30 0.05 0.76 (0.68, 0.85)

12 10 0.06 0.70 (0.69, 0.76)

20 0.05 0.76 (0.69, 0.83)

30 0.05 0.73 (0.68, 0.87)

30 4 10 0.08 0.74 (0.73, 0.76)
20 0.06 0.71 (0.69, 0.86)

30 0.05 0.74 (0.74, 0.75)

8 10 0.06 0.70 (0.65, 0.77)

20 0.05 0.73 (0.71, 0.87)

30 0.04 0.75 (0.72, 0.86)

12 10 0.05 0.74 (0.70, 0.80)

20 0.04 0.66 (0.61, 0.87)

30 0.04 0.75 (0.74,0.77)

02=0.01, 02=0.39, 02=0.05, 4,=0.70, 7 =0.75, 7=0.5
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Table B.12: Simulation Results for Case 12
Randomize at Level One with Treatment x Level Two—Binary Outcome

c P n d 7 95% Cl of 7
10 4 10 0.12 0.76 (0.72, 0.76)
20 0.09 0.73 (0.73, 0.76)

30 0.08 0.75 (0.75, 0.77)

8 10 0.09 0.74 (0.73,0.77)

20 0.07 0.71 (0.70, 0.73)

30 0.06 0.76 (0.71, 0.79)

12 10 0.08 0.74 (0.71, 0.77)

20 0.06 0.75 (0.73, 0.79)

30 0.05 0.70 (0.69, 0.78)

20 4 10 0.09 0.72 (0.70, 0.87)
20 0.06 0.75 (0.69, 0.76)

30 0.05 0.73 (0.71, 0.78)

8 10 0.06 0.70 (0.70, 0.79)

20 0.05 0.73 (0.71, 0.77)

30 0.04 0.74 (0.71, 0.76)

12 10 0.05 0.70 (0.69, 0.76)

20 0.04 0.76 (0.72, 0.78)

30 0.03 0.70 (0.69, 0.77)

30 4 10 0.07 0.77 (0.73,0.78)
20 0.05 0.72 (0.70, 0.81)

30 0.04 0.74 (0.74, 0.75)

8 10 0.05 0.76 (0.75, 0.77)

20 0.04 0.73 (0.71, 0.77)

30 0.03 0.75 (0.72, 0.76)

12 10 0.04 0.74 (0.70, 0.80)

20 0.03 0.70 (0.70, 0.78)

30 0.03 0.74 (0.73,0.77)

02=0.01, 02=0.39, 0%,=0.02, 4, =0.70, 7 =0.75, 7=0.5
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